Stochastic Taylor expansions and heat kernel asymptotics
ESAIM: Probability and Statistics, Tome 16 (2012), pp. 453-478.

These notes focus on the applications of the stochastic Taylor expansion of solutions of stochastic differential equations to the study of heat kernels in small times. As an illustration of these methods we provide a new heat kernel proof of the Chern-Gauss-Bonnet theorem.

DOI : https://doi.org/10.1051/ps/2011107
Classification : 60H30,  58J20
Mots clés : stochastic Taylor expansions, index theorems
@article{PS_2012__16__453_0,
     author = {Baudoin, Fabrice},
     title = {Stochastic {Taylor} expansions and heat kernel asymptotics},
     journal = {ESAIM: Probability and Statistics},
     pages = {453--478},
     publisher = {EDP-Sciences},
     volume = {16},
     year = {2012},
     doi = {10.1051/ps/2011107},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2011107/}
}
TY  - JOUR
AU  - Baudoin, Fabrice
TI  - Stochastic Taylor expansions and heat kernel asymptotics
JO  - ESAIM: Probability and Statistics
PY  - 2012
DA  - 2012///
SP  - 453
EP  - 478
VL  - 16
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2011107/
UR  - https://doi.org/10.1051/ps/2011107
DO  - 10.1051/ps/2011107
LA  - en
ID  - PS_2012__16__453_0
ER  - 
Baudoin, Fabrice. Stochastic Taylor expansions and heat kernel asymptotics. ESAIM: Probability and Statistics, Tome 16 (2012), pp. 453-478. doi : 10.1051/ps/2011107. http://archive.numdam.org/articles/10.1051/ps/2011107/

[1] M.F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. I. Ann. Math. 86 (1967) 374-407. | MR 212836 | Zbl 0161.43201

[2] R. Azencott, Formule de Taylor stochastique et développements asymptotiques d'intégrales de Feynman, in Séminaire de probabilités XVI, edited by J. Azema, M. Yor. Lect. Notes. Math. 921 (1982) 237-284. | Numdam | MR 658728 | Zbl 0484.60064

[3] R. Azencott, Densité des diffusions en temps petit : développements asymptotiques (part I), Sem. Prob. 18 (1984) 402-498. | Numdam | MR 770974 | Zbl 0546.60079

[4] F. Baudoin, An Introduction to the Geometry of Stochastic Flows. Imperial College Press (2004). | MR 2154760 | Zbl 1085.60002

[5] F. Baudoin, Brownian Chen series and Atiyah-Singer theorem. J. Funct. Anal. 254 (2008) 301-317. | MR 2376573 | Zbl 1147.58017

[6] F. Baudoin and L. Coutin, Operators associated with a stochastic differential equation driven by fractional Brownian motions. Stoc. Proc. Appl. 117 (2007) 550-574. | MR 2320949 | Zbl 1119.60043

[7] G. Ben Arous, Méthodes de Laplace et de la phase stationnaire sur l'espace de Wiener (French) [The Laplace and stationary phase methods on Wiener space]. Stochastics 25 (1988) 125-153. | MR 999365 | Zbl 0666.60026

[8] G. Ben Arous, Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus (French) [Asymptotic expansion of the hypoelliptic heat kernel outside of the cut-locus]. Ann. Sci. Cole Norm. Sup. 21 (1988) 307-331. | Numdam | MR 974408 | Zbl 0699.35047

[9] G. Ben Arous, Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale. Ann. Inst. Fourier 39 (1989) 73-99. | Numdam | MR 1011978 | Zbl 0659.35024

[10] G. Ben Arous, Flots et séries de Taylor stochastiques. J. Probab. Theory Relat. Fields 81 (1989) 29-77. | MR 981567 | Zbl 0639.60062

[11] G. Ben Arous and R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale. II (French) [Exponential decay of the heat kernel on the diagonal II] Probab. Theory Relat. Fields 90 (1991) 377-402. | MR 1133372 | Zbl 0734.60027

[12] N. Berline, E. Getzler and M. Vergne, Heat kernels and Dirac operators, 2nd edition. Grundlehren Text Editions, Springer (2003). | MR 2273508 | Zbl 1037.58015

[13] J.M. Bismut, The Atiyah-Singer Theorems : A Probabilistic Approach. J. Func. Anal., Part I, II 57 (1984) 329-348. | MR 756173 | Zbl 0556.58027

[14] N. Bourbaki, Groupes et Algèbres de Lie, Chap. 1-3. Hermann (1972). | Zbl 0483.22001

[15] F. Castell, Asymptotic expansion of stochastic flows. Probab. Theory Relat. Fields 96 (1993) 225-239. | MR 1227033 | Zbl 0794.60054

[16] K.T. Chen, Integration of paths, Geometric invariants and a generalized Baker-Hausdorff formula. Ann. Math. 65 (1957). | MR 85251 | Zbl 0077.25301

[17] S.S. Chern, A simple intrinsic proof of the Gauss-Bonnet theorem for closed Riemannian manifolds. Ann. Math. 45 (1944) 747-752. | MR 11027 | Zbl 0060.38103

[18] E.B. Dynkin, Calculation of the coefficients in the Campbell-Hausdorff formula. Dodakly Akad. Nauk SSSR 57 (1947) 323-326, in Russian, English translation (1997). | MR 21940 | Zbl 0029.24507

[19] M. Fliess and D. Normand-Cyrot, Algèbres de Lie nilpotentes, formule de Baker-Campbell-Hausdorff et intégrales itérées de K.T. Chen, in Séminaire de Probabilités. Lect. Notes Math. 920 (1982). | Numdam | Zbl 0495.60064

[20] A. Friedman, Partial differential equations of parabolic type. Prentice-Hall, Inc., Englewood Cliffs, NJ (1964) xiv+347. | MR 181836 | Zbl 0144.34903

[21] P. Friz and N. Victoir, Euler estimates for rough differential equations. J. Differ. Equ. 244 (2008) 388-412. | MR 2376201 | Zbl 1140.60037

[22] P. Friz and N. Victoir, Multidimensional stochastic processes as rough paths. Theory and Applications, Cambridge Studies in Adv. Math. (2009). | MR 2604669 | Zbl 1193.60053

[23] B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents. Acta Math. 139 (1977) 95-153. | MR 461589 | Zbl 0366.22010

[24] E. Getzler, A short proof of the Atiyah-Singer index theorem. Topology 25 (1986) 111-117. | MR 836727 | Zbl 0607.58040

[25] P.B. Gilkey, Curvature and the eigenvalues of the Laplacian for elliptic complexes. Adv. Math. 10 (1973) 344-382. | MR 324731 | Zbl 0259.58010

[26] E.P. Hsu, Stochastic Analysis on manifolds. AMS, Providence USA. Grad. Texts Math. 38 (2002). | MR 1882015 | Zbl 0994.58019

[27] Y. Inahama, A stochastic Taylor-like expansion in the rough path theory. Preprint from Tokyo Institute of Technology (2007) | MR 2679952 | Zbl 1203.60073

[28] P.E. Kloeden and E. Platen, Numerical solution of stochastic differential equations. Appl. Math. 23 (1992). | MR 1214374 | Zbl 0752.60043

[29] H. Kunita, Asymptotic self-similarity and short time asymptotics of stochastic flows. J. Math. Sci. Univ. Tokyo 4 (1997) 595-619. | MR 1484603 | Zbl 0890.60007

[30] R. Léandre, Sur le théorème d'Atiyah-Singer. Probab. Theory Relat. Fields 80 (1988) 119-137. | Zbl 0639.58024

[31] R. Léandre, Développement asymptotique de la densité d'une diffusion dégénérée. Forum Math. 4 (1992) 45-75. | Zbl 0749.60054

[32] T. Lyons, Differential equations driven by rough signals. Revista Mathemàtica Iberio Americana 14 (1998) 215-310. | MR 1654527 | Zbl 0923.34056

[33] T. Lyons and N. Victoir, Cubature on Wiener space. Proc. R. Soc. Lond. A 460 (2004) 169-198. | MR 2052260 | Zbl 1055.60049

[34] H. Mckean and I.M. Singer, Curvature and the eigenvalues of the Laplacian. J. Differ. Geom. 1 (1967) 43-69. | MR 217739 | Zbl 0198.44301

[35] P. Malliavin, Stochastic calculus of variations and hypoelliptic operators, in Proc. of Inter. Symp. Stoch. Differ. Equ., Kyoto 1976, edited by Wiley (1978) 195-263. | MR 536013 | Zbl 0411.60060

[36] P. Malliavin, Stochastic Analysis. Grundlehren der Mathematischen Wissenschaften 313 (1997). | MR 1450093 | Zbl 0878.60001

[37] V.K. Patodi, An analytic proof of the Riemann-Roch-Hirzebruch theorem. J. Differ. Geom. 5 (1971) 251-283. | MR 290318 | Zbl 0219.53054

[38] C. Reutenauer, Free Lie algebras, London Mathematical Society Monographs. New series 7 (1993). | MR 1231799 | Zbl 0798.17001

[39] S. Rosenberg, The Laplacian on a Riemannian manifold. London Mathematical Society Student Texts 31 (1997). | MR 1462892 | Zbl 0868.58074

[40] L.P. Rotschild and E.M. Stein, Hypoelliptic differential operators and Nilpotent groups. Acta Math. 137 (1976) 247-320. | MR 436223 | Zbl 0346.35030

[41] D. Stroock and S.R.S. Varadhan, Multidimensional diffusion processes. Springer-Verlag, Berlin, New York. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 233 (1979) xii+338. | MR 532498 | Zbl 0426.60069

[42] R.S. Strichartz, The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations. J. Func. Anal. 72. (1987) 320-345. | MR 886816 | Zbl 0623.34058

[43] S. Takanobu, Diagonal short time asymptotics of heat kernels for certain degenerate second order differential operators of Hörmander type. Publ. Res. Inst. Math. Sci. 24 (1988) 169-203. | MR 944857 | Zbl 0677.35019

[44] M.E. Taylor, Partial Differential Equations, Basic Theory, 2nd edition. Appl. Math. 23 (1999) | MR 1395147 | Zbl 0869.35001

[45] M.E. Taylor, Partial Differential Equations, Qualitative Studies of Linear Equations. Appl. Math. Sci. 116 (1996). | MR 1395149 | Zbl 0869.35003

Cité par Sources :