Fixed-α and fixed-β efficiencies
ESAIM: Probability and Statistics, Tome 17 (2013), pp. 224-235.

Consider testing H0 : F ∈ ω0 against H1 : F ∈ ω1 for a random sample X1, ..., Xn from F, where ω0 and ω1 are two disjoint sets of cdfs on ℝ = (-∞, ∞). Two non-local types of efficiencies, referred to as the fixed-α and fixed-β efficiencies, are introduced for this two-hypothesis testing situation. Theoretical tools are developed to evaluate these efficiencies for some of the most usual goodness of fit tests (including the Kolmogorov-Smirnov tests). Numerical comparisons are provided using several examples.

DOI : 10.1051/ps/2011143
Classification : 62F03, 62F05, 62F12
Mots-clés : bahadur efficiency, fixed-α efficiency, fixed-β efficiency, goodness-of-fit tests, Hodges-Lehmann efficiency
@article{PS_2013__17__224_0,
     author = {Withers, Christopher S. and Nadarajah, Saralees},
     title = {Fixed-$\alpha $ and fixed-$\beta $ efficiencies},
     journal = {ESAIM: Probability and Statistics},
     pages = {224--235},
     publisher = {EDP-Sciences},
     volume = {17},
     year = {2013},
     doi = {10.1051/ps/2011143},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2011143/}
}
TY  - JOUR
AU  - Withers, Christopher S.
AU  - Nadarajah, Saralees
TI  - Fixed-$\alpha $ and fixed-$\beta $ efficiencies
JO  - ESAIM: Probability and Statistics
PY  - 2013
SP  - 224
EP  - 235
VL  - 17
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2011143/
DO  - 10.1051/ps/2011143
LA  - en
ID  - PS_2013__17__224_0
ER  - 
%0 Journal Article
%A Withers, Christopher S.
%A Nadarajah, Saralees
%T Fixed-$\alpha $ and fixed-$\beta $ efficiencies
%J ESAIM: Probability and Statistics
%D 2013
%P 224-235
%V 17
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2011143/
%R 10.1051/ps/2011143
%G en
%F PS_2013__17__224_0
Withers, Christopher S.; Nadarajah, Saralees. Fixed-$\alpha $ and fixed-$\beta $ efficiencies. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 224-235. doi : 10.1051/ps/2011143. http://archive.numdam.org/articles/10.1051/ps/2011143/

[1] I.G. Abrahamson, Exact Bahadur efficiences for they Kolmogorov-Smirnov and Kiefer one- and two-sample statistics. Ann. Math. Stat. 38 (1967) 1475-1490. | MR | Zbl

[2] T.W. Anderson and D.A. Darling, Asymptotic theory of certain ‘goodness of fit' criteria based on stochastic processes. Ann. Math. Stat. 23 (1952) 193-212. | MR | Zbl

[3] R.R. Bahadur, Stochastic comparison of tests. Ann. Math. Stat. 31 (1960) 276-295. | MR | Zbl

[4] R.R. Bahadur, An optimal property of the likelihood ratio statistic, Proc. of the 5th Berkeley Symposium 1 (1966) 13-26. | MR | Zbl

[5] R.R. Bahadur, Rates of convergence of estimates and test statistics. Ann. Math. Stat. 38 (1967) 303-324. | MR | Zbl

[6] L.D. Brown, Non-local asymptotic optimality of appropriate likelihood ratio tests. Ann. Math. Stat. 42 (1971) 1206-1240. | MR | Zbl

[7] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23 (1952) 493-507. | MR | Zbl

[8] R. Courant and D. Hilbert, Methods of Mathematical Physics I. Wiley, New York (1989). | MR | Zbl

[9] A.B. Hoadley, The theory of large deviations with statistical applictions. University of Califonia, Berkeley, Unpublished dissertation (1965). | MR

[10] A.B. Hoadley, On the probability of large deviations of functions of several empirical cumulative distribution functions. Ann. Math. Stat. 38 (1967) 360-382. | MR | Zbl

[11] J.L. Hodges and E.L. Lehmann, The efficiency of some nonparametric competitors of the t-test. Ann. Math. Stat. 27 (1956) 324-335. | MR | Zbl

[12] M. Kac, J. Kiefer and J. Wolfowitz, On tests of normality and other tests of goodness of fit based on distance methods. Ann. Math. Stat. 26 (1955) 189-11. | MR | Zbl

[13] W.C.M. Kallenberg and A.J. Koning, On Wieand's theorem. Stat. Probab. Lett. 25 (1995) 121-132. | MR | Zbl

[14] W.C.M. Kallenberg and T. Ledwina, On local and nonlocal measures of efficiency. Ann. Stat. 15 (1987) 1401-1420. | MR | Zbl

[15] A.N. Kolmogorov, Confidence limits for an unknown distribution function. Ann. Math. Stat. 12 (1941) 461-463. | MR | Zbl

[16] V.V. Litvinova and Y. Nikitin, Asymptotic efficiency and local optimality of tests based on two-sample U- and V-statistics. J. Math. Sci. 152 (2008) 921-927. | MR | Zbl

[17] Y. Nikitin, Asymptotic Efficiency of Nonparametric Tests. Cambridge University Press, New York (1995). | MR | Zbl

[18] E.S. Pearson and H.O Hartley, Biometrika Tables for Statisticians II. Cambridge University Press, New York (1972). | MR | Zbl

[19] J. Sethuraman, On the probability of large deviations of families of sample means. Ann. Math. Stat. 35 (1964) 1304-1316. | MR | Zbl

[20] J. Sethuraman, On the probability of large deviations of the mean for random variables in D [ 0,1 ] . Ann. Math. Stat. 36 (1965) 280-285. | MR | Zbl

[21] M.A. Stephens, The goodness-of-fit statistic VN: distribution and significance points. Biometrika 52 (1965) 309-321. | MR | Zbl

[22] H.S. Wieand, A condition under which the Pitman and Bahadur approaches to efficiency coincide. Ann. Stat. 4 (1976) 1003-1011. | MR | Zbl

[23] C.S. Withers and S. Nadarajah, Power of a class of goodness-of-fit test I. ESAIM : PS 13 (2009) 283-300. | Numdam | MR | Zbl

Cité par Sources :