Mixing conditions for multivariate infinitely divisible processes with an application to mixed moving averages and the supOU stochastic volatility model
ESAIM: Probability and Statistics, Tome 17 (2013), pp. 455-471.

We consider strictly stationary infinitely divisible processes and first extend the mixing conditions given in Maruyama [Theory Probab. Appl. 15 (1970) 1-22] and Rosiński and Żak [Stoc. Proc. Appl. 61 (1996) 277-288] from the univariate to the d-dimensional case. Thereafter, we show that multivariate Lévy-driven mixed moving average processes satisfy these conditions and hence a wide range of well-known processes such as superpositions of Ornstein - Uhlenbeck (supOU) processes or (fractionally integrated) continuous time autoregressive moving average (CARMA) processes are always mixing. Finally, mixing of the log-returns and the integrated volatility process of a multivariate supOU type stochastic volatility model, recently introduced in Barndorff - Nielsen and Stelzer [Math. Finance 23 (2013) 275-296], is established.

DOI : 10.1051/ps/2011158
Classification : 60E07, 60G10, 28D10, 91G70
Mots clés : infinitely divisible process, mixing, mixed moving average process, supOU process, stochastic volatility model, codifference
@article{PS_2013__17__455_0,
     author = {Fuchs, Florian and Stelzer, Robert},
     title = {Mixing conditions for multivariate infinitely divisible processes with an application to mixed moving averages and the {supOU} stochastic volatility model},
     journal = {ESAIM: Probability and Statistics},
     pages = {455--471},
     publisher = {EDP-Sciences},
     volume = {17},
     year = {2013},
     doi = {10.1051/ps/2011158},
     mrnumber = {3070886},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2011158/}
}
TY  - JOUR
AU  - Fuchs, Florian
AU  - Stelzer, Robert
TI  - Mixing conditions for multivariate infinitely divisible processes with an application to mixed moving averages and the supOU stochastic volatility model
JO  - ESAIM: Probability and Statistics
PY  - 2013
SP  - 455
EP  - 471
VL  - 17
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2011158/
DO  - 10.1051/ps/2011158
LA  - en
ID  - PS_2013__17__455_0
ER  - 
%0 Journal Article
%A Fuchs, Florian
%A Stelzer, Robert
%T Mixing conditions for multivariate infinitely divisible processes with an application to mixed moving averages and the supOU stochastic volatility model
%J ESAIM: Probability and Statistics
%D 2013
%P 455-471
%V 17
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2011158/
%R 10.1051/ps/2011158
%G en
%F PS_2013__17__455_0
Fuchs, Florian; Stelzer, Robert. Mixing conditions for multivariate infinitely divisible processes with an application to mixed moving averages and the supOU stochastic volatility model. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 455-471. doi : 10.1051/ps/2011158. http://archive.numdam.org/articles/10.1051/ps/2011158/

[1] R.B. Ash and M.F. Gardner, Topics in Stochastic Processes, Prob. Math. Stat., vol. 27. Academic Press, New York (1975). | MR | Zbl

[2] O.E. Barndorff-Nielsen, Superposition of Ornstein-Uhlenbeck type processes. Teor. Veroyatnost. i Primenen. 45 (2000) 289-311. | MR | Zbl

[3] O.E. Barndorff-Nielsen and N. Shephard, Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 (2001) 167-241. | MR | Zbl

[4] O.E. Barndorff-Nielsen and R. Stelzer, Multivariate supOU processes. Ann. Appl. Probab. 21 (2011) 140-182. | MR | Zbl

[5] O.E. Barndorff-Nielsen and R. Stelzer, The multivariate supOU stochastic volatility model. Math. Finance 23 (2013) 275-296. | MR | Zbl

[6] C. Bender, A. Lindner and M. Schicks, Finite variation of fractional Lévy processes. J. Theor. Probab. 25 (2012) 595-612. | MR | Zbl

[7] P.J. Brockwell, Lévy-driven continuous-time ARMA processes, in Handbook of Financial Time Series, edited by T.G. Andersen, R. Davis, J.-P. Kreiß and T. Mikosch. Springer, Berlin (2009) 457-480. | Zbl

[8] S. Cambanis, K. Podgórski and A. Weron, Chaotic behavior of infinitely divisible processes. Stud. Math. 115 (1995) 109-127. | MR | Zbl

[9] R. Cont and P. Tankov, Financial Modelling with Jump Processes. CRC Financial Mathematics Series. Chapman & Hall, London (2004). | MR | Zbl

[10] I.P. Cornfeld, S.V. Fomin and Y.G. Sinaǐ, Ergodic Theory, Grundlehren der mathematischen Wissenschaften, vol. 245. Springer-Verlag, New York (1982). | MR | Zbl

[11] V. Fasen and C. Klüppelberg, Extremes of supOU processes, in Stochastic Analysis and Applications: The Abel Symposium 2005, Abel Symposia, vol. 2, edited by F.E. Benth, G. Di Nunno, T. Lindstrom, B. Øksendal and T. Zhang. Springer, Berlin (2007) 340-359. | MR | Zbl

[12] D.M. Guillaume, M.M. Dacorogna, R.R. Davé, U.A. Müller, R.B. Olsen and O.V. Pictet, From the bird's eye to the microscope: a survey of new stylized facts of the intra-daily foreign exchange markets. Finance Stoch. 1 (1997) 95-129. | Zbl

[13] L.P. Hansen, Large sample properties of generalized method of moments estimators. Econometrica 50 (1982) 1029-1054. | MR | Zbl

[14] U. Krengel, Ergodic Theorems, de Gruyter Studies in Mathematics, vol. 6. Walter de Gruyter, Berlin (1985). | MR | Zbl

[15] M. Magdziarz, A note on Maruyama's mixing theorem. Theory Probab. Appl. 54 (2010) 322-324. | MR

[16] T. Marquardt, Fractional Lévy processes with an application to long memory moving average processes. Bernoulli 12 (2006) 1099-1126. | MR | Zbl

[17] T. Marquardt and R. Stelzer, Multivariate CARMA processes. Stoc. Proc. Appl. 117 (2007) 96-120. | MR | Zbl

[18] G. Maruyama, Infinitely divisible processes. Theory Probab. Appl. 15 (1970) 1-22. | MR | Zbl

[19] J. Pedersen, The Lévy-Itô decomposition of an independently scattered random measure. MaPhySto research report 2, MaPhySto and University of ?rhus. Available from http://www.maphysto.dk (2003).

[20] K. Petersen, Ergodic Theory, Cambridge Studies in Advanced Mathematics, vol. 2. Cambridge University Press, Cambridge, UK (1983). | MR | Zbl

[21] C. Pigorsch and R. Stelzer, A Multivariate Ornstein-Uhlenbeck Type Stochastic Volatility Model. Available from http://www.uni-ulm.de/mawi/finmath.html (2009).

[22] B.S. Rajput and J. Rosiński, Spectral representations of infinitely divisible processes. Probab. Theory Relat. Fields 82 (1989) 451-487. | MR | Zbl

[23] J. Rosiński and T. Żak, Simple conditions for mixing of infinitely divisible processes. Stoch. Proc. Appl. 61 (1996) 277-288. | Zbl

[24] J. Rosiński and T. Żak, The equivalence of ergodicity and weak mixing for infinitely divisible processes. J. Theor. Probab. 10 (1997) 73-86. | Zbl

[25] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics, vol. 68. Cambridge University Press, Cambridge, UK (1999). | Zbl

[26] D. Surgailis, J. Rosiński, V. Mandrekar and S. Cambanis, Stable mixed moving averages. Probab. Theory Relat. Fields 97 (1993) 543-558. | MR | Zbl

[27] T. Tosstorff and R. Stelzer, Moment based estimation of supOU processes and a related stochastic volatility model. In preparation (2011).

Cité par Sources :