A new proof of Kellerer's theorem
ESAIM: Probability and Statistics, Tome 16 (2012), pp. 48-60.

In this paper, we present a new proof of the celebrated theorem of Kellerer, stating that every integrable process, which increases in the convex order, has the same one-dimensional marginals as a martingale. Our proof proceeds by approximations, and calls upon martingales constructed as solutions of stochastic differential equations. It relies on a uniqueness result, due to Pierre, for a Fokker-Planck equation.

DOI : https://doi.org/10.1051/ps/2011164
Classification : 60E15,  60G44,  60G48,  60H10,  35K15
Mots clés : convex order, 1-martingale, peacock, Fokker-Planck equation
@article{PS_2012__16__48_0,
     author = {Hirsch, Francis and Roynette, Bernard},
     title = {A new proof of {Kellerer's} theorem},
     journal = {ESAIM: Probability and Statistics},
     pages = {48--60},
     publisher = {EDP-Sciences},
     volume = {16},
     year = {2012},
     doi = {10.1051/ps/2011164},
     zbl = {1277.60041},
     mrnumber = {2911021},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2011164/}
}
TY  - JOUR
AU  - Hirsch, Francis
AU  - Roynette, Bernard
TI  - A new proof of Kellerer's theorem
JO  - ESAIM: Probability and Statistics
PY  - 2012
DA  - 2012///
SP  - 48
EP  - 60
VL  - 16
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2011164/
UR  - https://zbmath.org/?q=an%3A1277.60041
UR  - https://www.ams.org/mathscinet-getitem?mr=2911021
UR  - https://doi.org/10.1051/ps/2011164
DO  - 10.1051/ps/2011164
LA  - en
ID  - PS_2012__16__48_0
ER  - 
Hirsch, Francis; Roynette, Bernard. A new proof of Kellerer's theorem. ESAIM: Probability and Statistics, Tome 16 (2012), pp. 48-60. doi : 10.1051/ps/2011164. http://archive.numdam.org/articles/10.1051/ps/2011164/

[1] C. Dellacherie and P.-A. Meyer, Probabilités et potentiel, Chapitres V à VIII, Théorie des martingales. Hermann (1980). | MR 566768 | Zbl 0464.60001

[2] F. Hirsch, C. Profeta, B. Roynette and M. Yor, Peacocks and associated martingales, with explicit constructions, Bocconi & Springer Series 3 (2011). | MR 2808243 | Zbl 1227.60001

[3] H.G. Kellerer, Markov-komposition und eine anwendung auf martingale. Math. Ann. 198 (1972) 99-122. | MR 356250 | Zbl 0229.60049

[4] G. Lowther, Fitting martingales to given marginals. http://arxiv.org/abs/0808.2319v1 (2008).

Cité par Sources :