On the time constant in a dependent first passage percolation model
ESAIM: Probability and Statistics, Tome 18 (2014), pp. 171-184.

We pursue the study of a random coloring first passage percolation model introduced by Fontes and Newman. We prove that the asymptotic shape of this first passage percolation model continuously depends on the law of the coloring. The proof uses several couplings, particularly with greedy lattice animals.

DOI : 10.1051/ps/2013032
Classification : 60K35, 82B43
Mots-clés : first passage percolation, percolation, time constant, random coloring
@article{PS_2014__18__171_0,
     author = {Scholler, Julie},
     title = {On the time constant in a dependent first passage percolation model},
     journal = {ESAIM: Probability and Statistics},
     pages = {171--184},
     publisher = {EDP-Sciences},
     volume = {18},
     year = {2014},
     doi = {10.1051/ps/2013032},
     mrnumber = {3230873},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2013032/}
}
TY  - JOUR
AU  - Scholler, Julie
TI  - On the time constant in a dependent first passage percolation model
JO  - ESAIM: Probability and Statistics
PY  - 2014
SP  - 171
EP  - 184
VL  - 18
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2013032/
DO  - 10.1051/ps/2013032
LA  - en
ID  - PS_2014__18__171_0
ER  - 
%0 Journal Article
%A Scholler, Julie
%T On the time constant in a dependent first passage percolation model
%J ESAIM: Probability and Statistics
%D 2014
%P 171-184
%V 18
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2013032/
%R 10.1051/ps/2013032
%G en
%F PS_2014__18__171_0
Scholler, Julie. On the time constant in a dependent first passage percolation model. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 171-184. doi : 10.1051/ps/2013032. http://archive.numdam.org/articles/10.1051/ps/2013032/

[1] P. Billingsley, Probability and Measure. Wiley-Interscience (1995). | MR | Zbl

[2] D. Boivin, First passage percolation: the stationary case. Probab. Theory Related Fields 86 (1990) 491-499. | MR | Zbl

[3] J.T. Cox, The time constant of first-passage percolation on the square lattice. Adv. Appl. Probab. 12 (1980) 864-879. | MR | Zbl

[4] J.T. Cox, A. Gandolfi, P.S. Griffin and H. Kesten, Greedy lattice animals. I. Upper bounds. Ann. Appl. Probab. 3 (1993) 1151-1169. | MR | Zbl

[5] J.T. Cox and H. Kesten, On the continuity of the time constant of first-passage percolation. J. Appl. Probab. 18 (1981) 809-819. | MR | Zbl

[6] L. Fontes and C.M. Van Newman, First passage percolation for random colorings of Zd. Ann. Appl. Probab. 3 (1993) 746-762. | MR | Zbl

[7] A. Gandolfi and H. Kesten, Greedy lattice animals. II. Linear growth. Ann. Appl. Probab. 4 (1994) 76-107. | MR | Zbl

[8] G. Grimmett, Percolation, in vol. 321 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], second edition. Springer-Verlag, Berlin (1999). | MR

[9] J.M. Hammersley and D.J.A. Welsh, First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory, in Proc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif. Springer-Verlag, New York (1965) 61-110. | MR | Zbl

[10] C.D. Howard, Models of first-passage percolation, in Probability on discrete structures, vol. 110 of Encyclopaedia Math. Sci. Springer, Berlin (2004) 125-173. | MR | Zbl

[11] H. Kesten, Analyticity properties and power law estimates of functions in percolation theory. J. Stat. Phys. 25 (1981) 717-756. | MR | Zbl

[12] H. Kesten, Aspects of first passage percolation. In École d'été de probabilités de Saint-Flour, XIV-1984, vol. 1180 of Lect. Notes in Math. Springer, Berlin (1986) 125-264. | MR | Zbl

[13] H. Kesten, First-passage percolation. From classical to modern probability, in vol. 54 of Progr. Probab. Birkhäuser, Basel (2003) 93-143. | MR | Zbl

[14] J.F.C. Kingman, The ergodic theory of subadditive stochastic processes. J. Roy. Stat. Soc. Ser. B 30 (1968) 499-510. | MR | Zbl

[15] T.M. Liggett, An improved subadditive ergodic theorem. Ann. Probab. 13 (1985) 1279-1285. | MR | Zbl

[16] J.B. Martin, Linear growth for greedy lattice animals. Stoch. Process. Appl. 98 (2002) 43-66. | MR | Zbl

Cité par Sources :