We pursue the study of a random coloring first passage percolation model introduced by Fontes and Newman. We prove that the asymptotic shape of this first passage percolation model continuously depends on the law of the coloring. The proof uses several couplings, particularly with greedy lattice animals.
Mots-clés : first passage percolation, percolation, time constant, random coloring
@article{PS_2014__18__171_0, author = {Scholler, Julie}, title = {On the time constant in a dependent first passage percolation model}, journal = {ESAIM: Probability and Statistics}, pages = {171--184}, publisher = {EDP-Sciences}, volume = {18}, year = {2014}, doi = {10.1051/ps/2013032}, mrnumber = {3230873}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2013032/} }
TY - JOUR AU - Scholler, Julie TI - On the time constant in a dependent first passage percolation model JO - ESAIM: Probability and Statistics PY - 2014 SP - 171 EP - 184 VL - 18 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps/2013032/ DO - 10.1051/ps/2013032 LA - en ID - PS_2014__18__171_0 ER -
Scholler, Julie. On the time constant in a dependent first passage percolation model. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 171-184. doi : 10.1051/ps/2013032. http://archive.numdam.org/articles/10.1051/ps/2013032/
[1] Probability and Measure. Wiley-Interscience (1995). | MR | Zbl
,[2] First passage percolation: the stationary case. Probab. Theory Related Fields 86 (1990) 491-499. | MR | Zbl
,[3] The time constant of first-passage percolation on the square lattice. Adv. Appl. Probab. 12 (1980) 864-879. | MR | Zbl
,[4] Greedy lattice animals. I. Upper bounds. Ann. Appl. Probab. 3 (1993) 1151-1169. | MR | Zbl
, , and ,[5] On the continuity of the time constant of first-passage percolation. J. Appl. Probab. 18 (1981) 809-819. | MR | Zbl
and ,[6] First passage percolation for random colorings of Zd. Ann. Appl. Probab. 3 (1993) 746-762. | MR | Zbl
and ,[7] Greedy lattice animals. II. Linear growth. Ann. Appl. Probab. 4 (1994) 76-107. | MR | Zbl
and ,[8] Percolation, in vol. 321 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], second edition. Springer-Verlag, Berlin (1999). | MR
,[9] First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory, in Proc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif. Springer-Verlag, New York (1965) 61-110. | MR | Zbl
and ,[10] Models of first-passage percolation, in Probability on discrete structures, vol. 110 of Encyclopaedia Math. Sci. Springer, Berlin (2004) 125-173. | MR | Zbl
,[11] Analyticity properties and power law estimates of functions in percolation theory. J. Stat. Phys. 25 (1981) 717-756. | MR | Zbl
,[12] Aspects of first passage percolation. In École d'été de probabilités de Saint-Flour, XIV-1984, vol. 1180 of Lect. Notes in Math. Springer, Berlin (1986) 125-264. | MR | Zbl
,[13] First-passage percolation. From classical to modern probability, in vol. 54 of Progr. Probab. Birkhäuser, Basel (2003) 93-143. | MR | Zbl
,[14] The ergodic theory of subadditive stochastic processes. J. Roy. Stat. Soc. Ser. B 30 (1968) 499-510. | MR | Zbl
,[15] An improved subadditive ergodic theorem. Ann. Probab. 13 (1985) 1279-1285. | MR | Zbl
,[16] Linear growth for greedy lattice animals. Stoch. Process. Appl. 98 (2002) 43-66. | MR | Zbl
,Cité par Sources :