We establish posterior consistency for non-parametric Bayesian estimation of the dispersion coefficient of a time-inhomogeneous Brownian motion.
Mots-clés : dispersion coefficient, non-parametric bayesian estimation, posterior consistency, time-inhomogeneous brownian motion
@article{PS_2014__18__332_0, author = {Gugushvili, Shota and Spreij, Peter}, title = {Consistent non-parametric bayesian estimation for a time-inhomogeneous brownian motion}, journal = {ESAIM: Probability and Statistics}, pages = {332--341}, publisher = {EDP-Sciences}, volume = {18}, year = {2014}, doi = {10.1051/ps/2013039}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2013039/} }
TY - JOUR AU - Gugushvili, Shota AU - Spreij, Peter TI - Consistent non-parametric bayesian estimation for a time-inhomogeneous brownian motion JO - ESAIM: Probability and Statistics PY - 2014 SP - 332 EP - 341 VL - 18 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps/2013039/ DO - 10.1051/ps/2013039 LA - en ID - PS_2014__18__332_0 ER -
%0 Journal Article %A Gugushvili, Shota %A Spreij, Peter %T Consistent non-parametric bayesian estimation for a time-inhomogeneous brownian motion %J ESAIM: Probability and Statistics %D 2014 %P 332-341 %V 18 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps/2013039/ %R 10.1051/ps/2013039 %G en %F PS_2014__18__332_0
Gugushvili, Shota; Spreij, Peter. Consistent non-parametric bayesian estimation for a time-inhomogeneous brownian motion. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 332-341. doi : 10.1051/ps/2013039. http://archive.numdam.org/articles/10.1051/ps/2013039/
[1] The consistency of posterior distributions in nonparametric problems. Ann. Statist. 27 (1999) 536-561. | MR | Zbl
, and ,[2] Bayesian estimation of the spectral density of a time series. J. Amer. Statist. Assoc. 99 (2004) 1050-1059. | MR | Zbl
, and ,[3] On the consistency of Bayes estimates. With a discussion and a rejoinder by the authors. Ann. Statist. 14 (1986) 1-67. | MR | Zbl
and ,[4] On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Ann. Inst. Henri Poincaré Probab. Statist. 29 (1993) 119-151. | Numdam | MR | Zbl
and ,[5] Nonparametric estimation of the diffusion coefficient by wavelets methods. Scand. J. Statist. 19 (1992) 317-335. | MR | Zbl
, and ,[6] Consistency issues in Bayesian nonparametrics. Asymptotics, Nonparametrics, and Time Series. Vol. 158 of Textbooks Monogr. Dekker, New York (1999) 639-667. | MR | Zbl
, and ,[7] Bayesian consistency for Markov processes. Sankhyā 68 (2006) 227-239. | MR | Zbl
and ,[8] Non-parametric Bayesian drift estimation for stochastic differential equations (2012). Preprint arXiv:1206.4981 [math.ST]. | MR
and ,[9] Minimax estimation of the diffusion coefficient through irregular samplings. Statist. Probab. Lett. 32 (1997) 11-24. | MR | Zbl
,[10] I.A. Ibragimov and R.Z. Has′minskiĭ, Asimptoticheskaya teoriya otsenivaniya [Asymptotic Theory of Estimation] (Russian). Nauka, Moscow (1979). | MR | Zbl
[11] Reversible jump MCMC for nonparametric drift estimation for diffusion processes. Comput. Statist. Data Anal. 71 (2014) 615-632. Available on http://dx.doi.org/10.1016/j.csda.2013.03.002. | MR
, and ,[12] Convergence rates of posterior distributions for Brownian semimartingale models. Bernoulli 12 (2006) 863-888. | MR | Zbl
, and ,[13] Consistent nonparametric Bayesian estimation for discretely observed scalar diffusions. Bernoulli 19 (2013) 44-63. | MR | Zbl
and ,[14] Nonparametric Bayesian inference for ergodic diffusions. J. Statist. Plann. Inference 139 (2009) 4193-4199. | MR | Zbl
and ,[15] Nonparametric estimation of diffusions: a differential equations approach. Biometrika 99 (2012) 511-531. | MR
, , and ,[16] Parameter estimation for multiscale diffusions: an overview. Statistical Methods for Stochastic Differential Equations. Vol. 124 of Monogr. Statist. Appl. Probab. CRC Press, Boca Raton, FL (2012) 429-472. | MR
, and ,[17] Posterior consistency via precision operators for nonparametric drift estimation in SDEs. Stoch. Process. Appl. 123 (2013) 603-628. | MR | Zbl
, and .[18] On Bayes procedures. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4 (1965) 10-26. | MR | Zbl
,[19] Nonparametric estimation of the diffusion coefficient of a diffusion process. Stochastic Anal. Appl. 16 (1998) 185-200. | MR | Zbl
,[20] Asymptotic Statistics. Vol. 3 of Cambr. Ser. Stat. Probab. Math. Cambridge University Press, Cambridge (1998). | MR | Zbl
,[21] Rates of contraction of posterior distributions based on Gaussian process priors. Ann. Statist. 36 (2008a) 1435-1463. | MR | Zbl
and ,[22] Reproducing kernel Hilbert spaces of Gaussian priors. Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh. Vol. 3 of Inst. Math. Stat. Collect. Inst. Math. Statist., Beachwood, OH (2008) 200-222. | MR
and ,[23] On sufficient conditions for Bayesian consistency. Biometrika 90 (2003) 482-488. | MR | Zbl
,[24] New approaches to Bayesian consistency. Ann. Statist. 32 (2004) 2028-2043. | MR | Zbl
,[25] Asymptotic properties of nonparametric Bayesian procedures. Practical Nonparametric and Semiparametric Bayesian Statistics. Vol. 133 of Lect. Notes Statist. Springer, New York (1998) 293-304. | MR | Zbl
,[26] Nonparametric Bayesian methods for one-dimensional diffusion models. Math. Biosci. (2013). Available on http://dx.doi.org/10.1016/j.mbs.2013.03.008. | MR | Zbl
,Cité par Sources :