Uniform strong consistency of a frontier estimator using kernel regression on high order moments
ESAIM: Probability and Statistics, Tome 18 (2014), pp. 642-666.

We consider the high order moments estimator of the frontier of a random pair, introduced by [S. Girard, A. Guillou and G. Stupfler, J. Multivariate Anal. 116 (2013) 172-189]. In the present paper, we show that this estimator is strongly uniformly consistent on compact sets and its rate of convergence is given when the conditional cumulative distribution function belongs to the Hall class of distribution functions.

DOI : 10.1051/ps/2013050
Classification : 62G05, 62G20
Mots-clés : frontier estimation, kernel estimation, strong uniform consistency, Hall class
@article{PS_2014__18__642_0,
     author = {Girard, St\'ephane and Guillou, Armelle and Stupfler, Gilles},
     title = {Uniform strong consistency of a frontier estimator using kernel regression on high order moments},
     journal = {ESAIM: Probability and Statistics},
     pages = {642--666},
     publisher = {EDP-Sciences},
     volume = {18},
     year = {2014},
     doi = {10.1051/ps/2013050},
     mrnumber = {3334007},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2013050/}
}
TY  - JOUR
AU  - Girard, Stéphane
AU  - Guillou, Armelle
AU  - Stupfler, Gilles
TI  - Uniform strong consistency of a frontier estimator using kernel regression on high order moments
JO  - ESAIM: Probability and Statistics
PY  - 2014
SP  - 642
EP  - 666
VL  - 18
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2013050/
DO  - 10.1051/ps/2013050
LA  - en
ID  - PS_2014__18__642_0
ER  - 
%0 Journal Article
%A Girard, Stéphane
%A Guillou, Armelle
%A Stupfler, Gilles
%T Uniform strong consistency of a frontier estimator using kernel regression on high order moments
%J ESAIM: Probability and Statistics
%D 2014
%P 642-666
%V 18
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2013050/
%R 10.1051/ps/2013050
%G en
%F PS_2014__18__642_0
Girard, Stéphane; Guillou, Armelle; Stupfler, Gilles. Uniform strong consistency of a frontier estimator using kernel regression on high order moments. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 642-666. doi : 10.1051/ps/2013050. http://archive.numdam.org/articles/10.1051/ps/2013050/

[1] M. Abramovitz and I. Stegun, Handbook of Mathematical Functions. Dover (1965).

[2] Y. Aragon, A. Daouia and C. Thomas-Agnan, Nonparametric frontier estimation: a conditional quantile-based approach. Econom. Theory 21 (2005) 358-389. | MR | Zbl

[3] N.H. Bingham, C.M. Goldie and J.L. Teugels. Regular Variation. Cambridge, Cambridge University Press (1987). | MR | Zbl

[4] C. Cazals, J.-P. Florens and L. Simar, Nonparametric frontier estimation: a robust approach. J. Econom. 106 (2002) 1-25. | MR | Zbl

[5] A. Daouia and L. Simar, Robust nonparametric estimators of monotone boundaries. J. Multivariate Anal. 96 (2005) 311-331. | MR | Zbl

[6] D. Deprins, L. Simar and H. Tulkens, Measuring labor efficiency in post offices, in The Performance of Public Enterprises: Concepts and Measurements. Edited by P. Pestieau, M. Marchand and H. Tulkens. Amsterdam: North Holland (1984) 243-267.

[7] U. Einmahl and D.M. Mason, An empirical process approach to the uniform consistency of kernel-type function estimators. J. Theoret. Probab. 13 (2000) 1-37. | MR | Zbl

[8] P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling extremal events. Springer (1997). | MR

[9] L. Gardes and G. Stupfler, Estimation of the conditional tail-index using a smoothed local Hill estimator. Extremes 17 (2014) 45-75. | MR

[10] J. Geffroy, Sur un problème d'estimation géométrique. Publ. Inst. Statist. Univ. Paris XIII (1964) 191-210. | MR | Zbl

[11] J. Geffroy, S. Girard and P. Jacob, Asymptotic normality of the L1 −error of a boundary estimator. Nonparametr. Stat. 18 (2006) 21-31. | MR | Zbl

[12] S. Girard, A. Guillou and G. Stupfler, Frontier estimation with kernel regression on high order moments. J. Multivariate Anal. 116 (2013) 172-189. | MR | Zbl

[13] S. Girard, A. Iouditski and A. Nazin, L1 −optimal nonparametric frontier estimation via linear programming. Autom. Remote Control 66 (2005) 2000-2018. | MR | Zbl

[14] S. Girard and P. Jacob, Frontier estimation via kernel regression on high power-transformed data. J. Multivariate Anal. 99 (2008) 403-420. | MR | Zbl

[15] S. Girard and P. Jacob, Frontier estimation with local polynomials and high power-transformed data. J. Multivariate Anal. 100 (2009) 1691-1705. | MR | Zbl

[16] P. Hall, On estimating the endpoint of a distribution. Ann. Statist. 10 (1982) 556-568. | MR | Zbl

[17] W. Härdle, P. Janssen and R. Serfling, Strong uniform consistency rates for estimators of conditional functionals. Ann. Statist. 16 (1988) 1428-1449. | MR | Zbl

[18] W. Härdle and J.S. Marron, Optimal bandwidth selection in nonparametric regression function estimation. Ann. Statist. 13 (1985) 1465-1481. | MR | Zbl

[19] W. Härdle, B.U. Park and A. Tsybakov, Estimation of non-sharp support boundaries. J. Multivariate Anal. 55 (1995) 205-218. | MR | Zbl

[20] W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 (1963) 13-30. | MR | Zbl

[21] P. Jacob and C. Suquet, Estimating the edge of a Poisson process by orthogonal series. J. Statist. Plann. Inference 46 (1995) 215-234. | MR | Zbl

[22] A. Korostelev, L. Simar and A. Tsybakov, Efficient estimation of monotone boundaries. Ann. Statist. 23 (1995) 476-489. | MR | Zbl

[23] M. Lemdani, E. Ould-Saïd and N. Poulin, Asymptotic properties of a conditional quantile estimator with randomly truncated data. J. Multivariate Anal. 100 (2009) 546-559. | MR | Zbl

[24] Y.P. Mack and B.W. Silverman, Weak and strong uniform consistency of kernel regression estimates. Z. Wahrscheinlichkeitstheorie verw. Gebiete 61 (1982) 405-415. | MR | Zbl

[25] E.A. Nadaraya, On non-parametric estimates of density functions and regression curves. Theory Probab. Appl. 10 (1965) 186-190. | MR | Zbl

[26] E. Parzen, On estimation of a probability density function and mode. Ann. Math. Statist. 33 (1962) 1065-1076. | MR | Zbl

[27] M. Rosenblatt, Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27 (1956) 832-837. | MR | Zbl

[28] B.W. Silverman, Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. Ann. Statist. 6 (1978) 177-184. | MR | Zbl

[29] W. Stute, A law of the iterated logarithm for kernel density estimators. Ann. Probab. 10 (1982) 414-422. | MR | Zbl

Cité par Sources :