Let be a filtration and τ be a random time. Let be the progressive enlargement of with τ. We study the following formula, called the optional splitting formula: For any -optional process Y, there exists an -optional process Y′ and a function Y′′ defined on [0,∞] × (ℝ+ × Ω) being measurable, such that . (This formula can also be formulated for multiple random times τ1,...,τk). We are interested in this formula because of its fundamental role in many recent papers on credit risk modeling, and also because of the fact that its validity is limited in scope and this limitation is not sufficiently underlined. In this paper we will determine the circumstances in which the optional splitting formula is valid. We will then develop practical sufficient conditions for that validity. Incidentally, our results reveal a close relationship between the optional splitting formula and several measurability questions encountered in credit risk modeling. That relationship allows us to provide simple answers to these questions.
Mots-clés : optional process, progressive enlargement of filtration, credit risk modeling, conditional density hypothesis
@article{PS_2014__18__829_0, author = {Song, Shiqi}, title = {Optional splitting formula in a progressively enlarged filtration}, journal = {ESAIM: Probability and Statistics}, pages = {829--853}, publisher = {EDP-Sciences}, volume = {18}, year = {2014}, doi = {10.1051/ps/2014003}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2014003/} }
TY - JOUR AU - Song, Shiqi TI - Optional splitting formula in a progressively enlarged filtration JO - ESAIM: Probability and Statistics PY - 2014 SP - 829 EP - 853 VL - 18 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps/2014003/ DO - 10.1051/ps/2014003 LA - en ID - PS_2014__18__829_0 ER -
Song, Shiqi. Optional splitting formula in a progressively enlarged filtration. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 829-853. doi : 10.1051/ps/2014003. http://archive.numdam.org/articles/10.1051/ps/2014003/
[1] Study of a filtration expanded to include an honest time. Probab. Theory Relat. Fields 44 (1978) 307-323. | MR | Zbl
,[2] Autour d'un théorème de Tsirelson sur des filtrations browniennes et non browniennes. Séminaire de Probabilité, XXXII. Springer-Verlag Berlin (1998). | Numdam | MR | Zbl
, , , and ,[3] M. Barlow and J. Pitman and M. Yor, On Walsh's Brownian motion. Séminaire de Probabilité, XXIII. Springer-Verlag Berlin (1989) | Numdam | Zbl
[4] A. Bélanger and S. Shreve and D. Wong, A unified model for credit derivatives. Working paper (2002).
[5] Local risk-minimization for defaultable claims with recovery process. Appl. Math. Optim. 65 (2012) 293-314. | MR | Zbl
and ,[6] T. Bielecki and M. Jeanblanc and M. Rutkowski, Credit Risk Modelling. Osaka University Press (2009). | Zbl
[7] Convergence of probability measures. John Wiley & Sons (1968). | MR | Zbl
,[8] Changes of filtrations and of probability measures. Prob. Theory Relat. Fields 4 (1978) 269-295. | MR | Zbl
and ,[9] G. Callegaro and M. Jeanblanc and B. Zargari, Carthaginian enlargement of filtrations. ESAIM: PS 17 (2013) 550-566. | Numdam | MR | Zbl
[10] Exercises in probability: a guide tour from measure theory to random processes, via conditioning. Cambridge University Press (2009). | MR | Zbl
and ,[11] Filtrations indexed by ordinals; application to a conjecture of S. Laurent. Working paper (2012). | MR
and ,[12] Probabilités et potentiel Chapitres I à IV. Hermann Paris (1975). | Zbl
and ,[13] Probabilités et potentiel Chapitres XVII à XXIV. Hermann Paris (1992). | Zbl
and ,[14] Karoui and M. Jeanblanc and Y. Jiao, What happens after a default: the conditional density approach. Stoch. Process. Appl. 120 (2010) 1011-1032. | MR | Zbl
.[15] A remark on Tsirelson's stochastic differential equation. Séminaire de Probabilités XXXIII, Springer-Verlag Berlin (1999) 291-303. | Numdam | MR | Zbl
and ,[16] On Vershik's standardness criterion and Tsirelson's notion of cosiness. Séminaire de Probabilités XXXV. Springer (2001) 265-305. | Numdam | MR | Zbl
and ,[17] C. Fontana and M. Jeanblanc and S. Song, On arbitrages arising with honest times. Finance Stoch. 18 (2014) 515-543. | MR
[18] On the exchange of intersection and supremum of σ-fields in filtering theory. Israel J. Math. 192 (2012) 763. | MR | Zbl
[19] S.W. He and J.G. Wang and J.A. Yan, Semimartingale Theory And Stochastic Calculus. Science Press CRC Press Inc (1992). | MR | Zbl
[20] Modeling default risk: an overview Math. Finance: Theory and Practice. Fudan University High Education Press (1999).
and ,[21] An explicit model of default time with given survival probability. Stoch. Process. Appl. 121 (2010) 1678-1704. | MR | Zbl
and ,[22] Random times with given survival probability and their F-martingale decomposition formula. Stoch. Process. Appl. 121 (2010) 1389-1410. | MR | Zbl
and ,[23] Martingale representation theorem in progressively enlarged filtrations (2012). Preprint arXiv:1203.1447.
and ,[24] Reduced form modelling for credit risk (2008). Available on: defaultrisk.com
and ,[25] Semi-martingales et grossissement d'une filtration, vol. 833 of Lect. Notes Math. Springer (1980). | MR | Zbl
[26] Grossissement d'une filtration and semi-martingales: formules explicites. Séminaire de Probabilités XII (1978) 78-97. | Numdam | MR | Zbl
and ,[27] Multiple defaults and contagion risks with global and default-free information. Working paper (2010).
,[28] Progressive enlargement of filtrations and backward SDEs with jumps. Working paper (2011).
and ,[29] A remark on default risk models. Adv. Math. Econ. 1 (1999) 69-82. | MR | Zbl
,[30] On honest times in financial modeling (2008). Preprint arXiv:0808.2892.
and ,[31] Stochastic control under progressive enlargement of filtrations and applications to multiple defaults risk management. Stoch. Process. Appl. 120 (2010) 1795-1820. | MR | Zbl
,[32] Stochastic integration and differential equations, 2nd edition. Springer (2004). | MR | Zbl
,[33] Diffusions, Markov Processes, and Martingales, vol. 1, Foundations. John Wiley and Sons (1994). | MR | Zbl
and ,[34] Grossissement d'une filtration et problèmes connexes. Thesis Université Paris IV (1987).
,[35] Drift operator in a market affected by the expansion of information flow: a case study (2012). Preprint arXiv:1207.1662v1.
,[36] Local solution method for the problem of enlargement of filtration (2013). Preprint arXiv:1302.2862.
,[37] Calcul stochastique dépendant d'un paramètre. Probab. Theory Relat. Fields 45 (1978) 109-133. | MR | Zbl
and ,[38] Exchanging the order of taking suprema and countable intersections of σ-algebras. Ann. Inst. Henri Poincaré Section B, Tome 19 1 (1983) 91-100. | Numdam | MR | Zbl
,[39] Dynamized copulas and applications to counterparty credit risk. Ph.D. Thesis, University of Evry (2012).
,[40] Around Tsirelson's equation, or: The evolution process may not explain everything (2010). Preprint arXiv:0906.3442.
and ,Cité par Sources :