For a Poisson point process
Accepté le :
DOI : 10.1051/ps/2017004
Mots-clés : Functional statistic, poisson point process, regression estimate, minimax estimation
@article{PS_2017__21__138_0, author = {Cadre, Beno{\^\i}t and Klutchnikoff, Nicolas and Massiot, Gaspar}, title = {Minimax regression estimation for {Poisson} coprocess}, journal = {ESAIM: Probability and Statistics}, pages = {138--158}, publisher = {EDP-Sciences}, volume = {21}, year = {2017}, doi = {10.1051/ps/2017004}, mrnumber = {3716123}, zbl = {1395.62086}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ps/2017004/} }
TY - JOUR AU - Cadre, Benoît AU - Klutchnikoff, Nicolas AU - Massiot, Gaspar TI - Minimax regression estimation for Poisson coprocess JO - ESAIM: Probability and Statistics PY - 2017 SP - 138 EP - 158 VL - 21 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ps/2017004/ DO - 10.1051/ps/2017004 LA - en ID - PS_2017__21__138_0 ER -
%0 Journal Article %A Cadre, Benoît %A Klutchnikoff, Nicolas %A Massiot, Gaspar %T Minimax regression estimation for Poisson coprocess %J ESAIM: Probability and Statistics %D 2017 %P 138-158 %V 21 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ps/2017004/ %R 10.1051/ps/2017004 %G en %F PS_2017__21__138_0
Cadre, Benoît; Klutchnikoff, Nicolas; Massiot, Gaspar. Minimax regression estimation for Poisson coprocess. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 138-158. doi : 10.1051/ps/2017004. https://www.numdam.org/articles/10.1051/ps/2017004/
Rates of convergence of the functional
Approximation dans les espaces métriques et théorie de l’estimation. L. Z. Wahrscheinlichkeitstheorie verw Gebiete 65 (1983) 181–237. | DOI | MR | Zbl
,Nonparametric regression estimation onto a Poisson point process covariate. ESAIM: PS 19 (2015) 251–267. | DOI | Numdam | MR | Zbl
and ,Adaptive estimation in the functional nonparametric regression model. J. Multivariate Anal. 146 (2016) 105–118. | DOI | MR | Zbl
and ,L. Györfi, M. Kohler, A. Krzyzak and H. Walk, A distribution-free theory of nonparametric regression. Springer Science and Business Media (2002). | MR | Zbl
L. Horváth and P. Kokoszka, Inference for functional data with applications. Vol. 200. Springer Science and Business Media (2012). | MR | Zbl
The exact constant in the Rosenthal Inequality for random variables with mean zero. Theory Probab. Appl. 46 (1999) 127–131. | DOI | MR | Zbl
and ,K. Itô, Spectral type of the shift transformation of differential processes with stationary increments. Trans. Amer. Math. Soc. (1956) 253–263. | MR | Zbl
Optimal global rates of convergence for nonparametric regression with unbounded data. J. Statist. Plann. Inference 139 (2009) 1286–1296. | DOI | MR | Zbl
, and ,Poisson process Fock space representation, chaos expansion and covariance inequalities. Probab. Theory Relat. Fields 150 (2011) 663–690. | DOI | MR | Zbl
and ,Lower bound in regression for functional data by representation of small ball probabilities. Electr. J. Statist. 6 (2012) 1745–1778. | MR | Zbl
,D. Nualart and J. Vives, Anticipative calculus for the Poisson process based on the Fock space, Séminaire de Probabilitées XXIV. In: Lect. Notes Math. (1990) 154–165. | Numdam | MR | Zbl
J.O. Ramsay and B.W. Silverman, Functional data analysis. Springer Science & Business Media (2005). | MR | Zbl
A.B. Tsybakov, Introduction to nonparametric estimation. Revised and extended from the 2004 French original. Translated by Vladimir Zaiats. Springer Series in Statistics. Springer, New York (2009). | MR | Zbl
Cité par Sources :