Extremes of γ-reflected Gaussian processes with stationary increments
ESAIM: Probability and Statistics, Tome 21 (2017), pp. 495-535.

For a given centered Gaussian process with stationary increments X(t),t0 and c>0, let W γ (t)=X(t)-ct-γinf 0st (X(s)-cs),t0 denote the γ-reflected process, where γ(0,1). This process is important for both queueing and risk theory. In this contribution we are concerned with the asymptotics, as u, of (sup 0tT W γ (t)>u),t(o,]. Moreover, we investigate the approximations of first and last passage times for given large threshold u. We apply our findings to the cases with X being the multiplex fractional Brownian motion and the Gaussian integrated process. As a by-product we derive an extension of Piterbarg inequality for threshold-dependent random fields.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2017019
Classification : 60G15, 60G70
Mots-clés : γ-reflected Gaussian process, uniform double-sum method, first passage time, last passage time, fractional brownian motion, gaussian integrated process, pickands constant, piterbarg constant, piterbarg inequality
Dȩbicki, Krzysztof 1 ; Hashorva, Enkelejd 2 ; Liu, Peng 3

1 Krzysztof Dȩbicki, Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland.
2 Enkelejd Hashorva, Department of Actuarial Science, University of Lausanne, UNIL-Dorigny 1015 Lausanne, Switzerland.
3 Department of Actuarial Science, University of Lausanne, UNIL-Dorigny 1015 Lausanne, Switzerland and Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland.
@article{PS_2017__21__495_0,
     author = {D\c{e}bicki, Krzysztof and Hashorva, Enkelejd and Liu, Peng},
     title = {Extremes of \ensuremath{\gamma}-reflected {Gaussian} processes with stationary increments},
     journal = {ESAIM: Probability and Statistics},
     pages = {495--535},
     publisher = {EDP-Sciences},
     volume = {21},
     year = {2017},
     doi = {10.1051/ps/2017019},
     mrnumber = {3743924},
     zbl = {1393.60034},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2017019/}
}
TY  - JOUR
AU  - Dȩbicki, Krzysztof
AU  - Hashorva, Enkelejd
AU  - Liu, Peng
TI  - Extremes of γ-reflected Gaussian processes with stationary increments
JO  - ESAIM: Probability and Statistics
PY  - 2017
SP  - 495
EP  - 535
VL  - 21
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2017019/
DO  - 10.1051/ps/2017019
LA  - en
ID  - PS_2017__21__495_0
ER  - 
%0 Journal Article
%A Dȩbicki, Krzysztof
%A Hashorva, Enkelejd
%A Liu, Peng
%T Extremes of γ-reflected Gaussian processes with stationary increments
%J ESAIM: Probability and Statistics
%D 2017
%P 495-535
%V 21
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2017019/
%R 10.1051/ps/2017019
%G en
%F PS_2017__21__495_0
Dȩbicki, Krzysztof; Hashorva, Enkelejd; Liu, Peng. Extremes of γ-reflected Gaussian processes with stationary increments. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 495-535. doi : 10.1051/ps/2017019. http://archive.numdam.org/articles/10.1051/ps/2017019/

J. Hüsler and V.I. Piterbarg, Extremes of a certain class of Gaussian processes. Stochastic Process. Appl. 83 (1999) 257–271. | DOI | MR | Zbl

K. Dȩbicki, Ruin probability for Gaussian integrated processes. Stochastic Process. Appl. 98 (2002) 151–174. | DOI | MR | Zbl

J. Hüsler and V.I. Piterbarg, On the ruin probability for physical fractional Brownian motion. Stochastic Process. Appl. 113 (2004) 315–332. | DOI | MR | Zbl

A.B. Dieker, Extremes of Gaussian processes over an infinite horizon. Stochastic Process. Appl. 115 (2005) 207–248. | DOI | MR | Zbl

J. Hüsler and C.M. Schmid, Extreme values of a portfolio of Gaussian processes and a trend, Extremes 8 (2005) 171–189. | DOI | MR | Zbl

J. Hüsler and Y. Zhang, On first and last ruin times of Gaussian processes, Statist. Probab. Lett. 78 (2008) 1230–1235. | DOI | MR | Zbl

J. Hüsler, V.I. Piterbarg, and Y. Zhang, Extremes of Gaussian processes with random variance, Electron. J. Probab. 16 (2011) 1254–1280. | MR | Zbl

J. Hüsler, A. Ladneva and V. Piterbarg, On clusters of high extremes of Gaussian stationary processes with ϵ-separation. Electron. J. Probab. 15 (2010) 1825–1862. | MR | Zbl

J. Hüsler and V.I. Piterbarg, A limit theorem for the time of ruin in a Gaussian ruin problem. Stochastic Process. Appl. 118 (2008) 2014–202 . | DOI | MR | Zbl

S. Asmussen and H. Albrecher, Ruin probabilities. Vol. 14 of Advanced Series on Statistical Science & Applied Probability. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2ed. (2010). 1 | MR | Zbl

J.M. Harrison, Brownian motion and stochastic flow systems. Wiley Series in Probability and Mathematical Statistics. New York: John Wiley & Sons Inc. (1985). | MR | Zbl

H. Awad and P.W. Glynn, Conditional limit theorems for regulated fractional Brownian motion. Ann. Appl. Probab. 19 (2009) 2102–2136. | DOI | MR | Zbl

A.J. Zeevi and P.W. Glynn, On the maximum workload of a queue fed by fractional Brownian motion. Ann. Appl. Probab. 10 (2000) 1084–1099. | MR | Zbl

K. Dȩbicki and M. Mandjes, Queues and Lévy Fluctuation Theory. Springer International Publishing (2015). | MR

E. Hashorva, L. Ji and V.I. Piterbarg, On the supremum of γ-reflected processes with fractional Brownian motion as input. Stochastic Process. Appl. 123 (2013) 4111–4127. | DOI | MR | Zbl

V.I. Piterbarg, Asymptotic methods in the theory of Gaussian processes and fields. Vol. 148 of Translations of Mathematical Monographs. Providence, RI: American Mathematical Society (1996). | MR | Zbl

G. Samorodnitsky, Continuity of Gaussian processes. Ann. Probab. 16 (1988) 1019–1033. | DOI | MR | Zbl

K. Dȩbicki and M. Mandjes, Exact overflow asymptotics for queues with many Gaussian inputs. J. Appl. Probab. 40 (2003) 704–720. | DOI | MR | Zbl

L. Bai, K. Dȩbicki, E. Hashorva and L. Luo, On generalised Piterbarg constants, Methodology and Computing in Applied Probability (2017) 1–28. | MR

K. Dȩbicki and K. Tabiś, Extremes of the time-average of stationary Gaussian processes. Stochastic Process. Appl. 121 (2011) 2049–2063. | DOI | MR | Zbl

E. Hashorva and L. Ji, Approximation of passage times of γ-reflected processes with fBm input. J. Appl. Probab. 51 (2014) 713–726. | DOI | MR | Zbl

P. Liu, E. Hashorva and L. Ji, On the γ-reflected processes with fBm input. Lithuanian Math. J. 55 (2015) 402–412. | DOI | MR | Zbl

K. Dȩbicki and T. Rolski, A note on transient Gaussian fluid models. Queueing Systems Theory Appl. 42 (2002) 321–342. | DOI | MR | Zbl

J. Pickands, III, Upcrossing probabilities for stationary Gaussian processes. Trans. Amer. Math. Soc. 145 (1969) 51–73. | DOI | MR | Zbl

J. Pickands, III, Maxima of stationary Gaussian processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 7 (1967) 190–223. | DOI | MR | Zbl

J. Hüsler, Extremes of a Gaussian process and the constant H α . Extremes 2 (1999) 59–70. | DOI | MR | Zbl

E. Hashorva and J. Hüsler, Extremes of Gaussian processes with maximal variance near the boundary points. Methodol. Comput. Appl. Probab. 2 (2000) 255–269. | DOI | MR | Zbl

K. Dȩbicki and K. Kosiński, On the infimum attained by the reflected fractional Brownian motion. Extremes 17 (2014) 431–446. | DOI | MR | Zbl

A.B. Dieker and B. Yakir, On asymptotic constants in the theory of Gaussian processes. Bernoulli 20 (2014) 1600–1619. | DOI | MR | Zbl

A.J. Harper, Bounds on the suprema of Gaussian processes, and omega results for the sum of a random multiplicative function. Ann. Appl. Probab 23 (2013) 584–616. | DOI | MR | Zbl

K. Dȩbicki, E. Hashorva and L. Ji, Tail asymptotics of supremum of certain Gaussian processes over threshold dependent random intervals. Extremes 17 (2014) 411–429. | DOI | MR | Zbl

K. Dȩbicki, E. Hashorva, L. Ji and K. Tabiś, Extremes of vector-valued Gaussian processes: Exact asymptotics. Stochastic Process. Appl. 125 (2015) 4039–4065. | DOI | MR | Zbl

A.J. Harper, Pickands’ constant H α does not equal 1/Γ(1/α), for small α. Bernoulli 23 (2017) 582–602. | DOI | MR | Zbl

A.B. Dieker and T. Mikosch, Exact simulation of Brown-Resnick random fields at a finite number of locations. Extremes 18 (2015) 301–314. | DOI | MR | Zbl

Z. Michna, Remarks on Pickands constant. Probab. Math. Statist. 37 (2017) 373–393. | DOI | MR | Zbl

K. Dȩbicki, S. Engelke and E. Hashorva, Generalized Pickands constants and stationary max-stable processes. Extremes 20 (2017) 493–517. | DOI | MR | Zbl

Q.M. Shao, Bounds and estimators of a basic constant in extreme value theory of Gaussian processes. Statist. Sinica 6 (1996) 245–257. | MR | Zbl

J. Hüsler and V.I. Piterbarg, On shape of high massive excursions of trajectories of Gaussian homogeneous fields. Extremes 20 (2017) 691–711. | DOI | MR | Zbl

S.I. Resnick, Heavy-tail phenomena, Probabilistic and statistical modeling, Springer Series in Operations Research and Financial Engineering. New York: Springer (2007). | MR | Zbl

P. Soulier, Some applications of regular variation in probability and statistics, Instituto Venezolano de Investigaciones Cientcas: XXII escuela venezolana de matematicas (2009).

N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular variation, vol. 27 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1989). | MR | Zbl

P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling extremal events, For insurance and finance. Vol. 33 of Applications of Mathematics (New York). Berlin: Springer–Verlag (1997). | MR | Zbl

R.J. Adler and J.E. Taylor, Random fields and geometry. Springer Monographs in Mathematics, New York: Springer (2007). | MR | Zbl

G. Samorodnitsky and M.S. Taqqu, Stochastic monotonicity and Slepian-type inequalities for infinitely divisible and stable random vectors. Ann. Probab. 21 (1993) 143–160. | DOI | MR | Zbl

K. Dȩbicki, E. Hashorva and P. Liu, Extremes of Gaussian random fields with regularly varying dependence structure. Extremes 20 (2017) 333–392. | DOI | MR | Zbl

K. Dȩbicki and P. Liu, Extremes of stationary Gaussian storage models. Extremes 19 (2016) 273–302. | DOI | MR | Zbl

S.M. Berman, An asymptotic bound for the tail of the distribution of the maximum of a Gaussian process. Ann. Inst. Henri Poincaré Probab. Statist. 21 (1985) 47–57. | Numdam | MR | Zbl

V.I. Piterbarg, Twenty Lectures About Gaussian Processes. London, New York: Atlantic Financial Press (2015).

G. Samorodnitsky, Probability tails of Gaussian extrema. Stochastic Process. Appl. 38 (1991) 55–84. | DOI | MR | Zbl

Y. Zhou and Y. Xiao, Tail asymptotics for the extremes of bivariate Gaussian random fields. Bernoulli 23 (2017) 1566–1598. | DOI | MR | Zbl

J. Azaïs and M. Wschebor, Level sets and extrema of random processes and fields. John Wiley & Sons Inc., Hoboken, NJ (2009). | MR | Zbl

Cité par Sources :