In the present article, we investigate nonparametric estimation of the unknown drift function in an integrated Lévy driven jump diffusion model. Our aim will be to estimate the drift on a compact set based on a high-frequency data sample.
Instead of observing the jump diffusion process itself, we observe a discrete and high-frequent sample of the integrated process
Based on the available observations of , we will construct an adaptive penalized least-squares estimate in order to compute an adaptive estimator of the corresponding drift function . Under appropriate assumptions, we will bound the -risk of our proposed estimator. Moreover, we study the behavior of the proposed estimator in various Monte Carlo simulation setups.
Mots clés : Adaptive estimation, integrated jump diffusion, drift estimation, model selection, mean square estimator
@article{PS_2018__22__236_0, author = {Funke, Benedikt and Schmisser, \'Emeline}, title = {Adaptive nonparametric drift estimation of an integrated jump diffusion process}, journal = {ESAIM: Probability and Statistics}, pages = {236--260}, publisher = {EDP-Sciences}, volume = {22}, year = {2018}, doi = {10.1051/ps/2018005}, mrnumber = {3903643}, zbl = {1409.62161}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2018005/} }
TY - JOUR AU - Funke, Benedikt AU - Schmisser, Émeline TI - Adaptive nonparametric drift estimation of an integrated jump diffusion process JO - ESAIM: Probability and Statistics PY - 2018 SP - 236 EP - 260 VL - 22 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps/2018005/ DO - 10.1051/ps/2018005 LA - en ID - PS_2018__22__236_0 ER -
%0 Journal Article %A Funke, Benedikt %A Schmisser, Émeline %T Adaptive nonparametric drift estimation of an integrated jump diffusion process %J ESAIM: Probability and Statistics %D 2018 %P 236-260 %V 22 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps/2018005/ %R 10.1051/ps/2018005 %G en %F PS_2018__22__236_0
Funke, Benedikt; Schmisser, Émeline. Adaptive nonparametric drift estimation of an integrated jump diffusion process. ESAIM: Probability and Statistics, Tome 22 (2018), pp. 236-260. doi : 10.1051/ps/2018005. http://archive.numdam.org/articles/10.1051/ps/2018005/
The distribution of exchange rate volatility. J. Am. Stat. Assoc. 91 (2001) 42–55. | DOI | MR | Zbl
, , and ,Lévy Processes and Stochastic Calculus, 2nd edn. Part of Cambridge Studies in Advanced Mathematics. Cambridge, UK (2009). | DOI | MR
,Maximum likelihood estimation for integrated diffusion processes, in Contemporary Quantitative Finance: Essays in Honor of Eckhard Platen, edited by and . Springer Heidelberg, Germany (2010). | DOI | MR | Zbl
and ,On the functional estimation of jump-diffusion models. J. Econom. 116 (2003) 293–328. | DOI | MR | Zbl
and ,Fully nonparametric estimation of scalar diffusion models. Econometrica 71 (2003) 241–243. | DOI | MR | Zbl
and ,Risk bounds for model selection via penalization. Probab. Theory Relat. Fields 113 (1999) 301–413. | DOI | MR | Zbl
, and ,Estimating stochastic volatility diffusion using conditional moments of integrated volatility. J. Econom. 109 (2002) 33–65. | DOI | MR | Zbl
and ,The Econometrics of Financial Markets. Princeton University Press, Princeton (1997). | DOI | Zbl
, and ,Penalized nonparametric mean square error estimation of the coefficients of diffusion processes. Bernoulli 13 (2007) 514–543. | DOI | MR | Zbl
, and ,Nonparametric adaptive estimation for integrated diffusions. Stoch. Process. Appl. 119 (2009) 811–834. | DOI | MR | Zbl
, and ,Constructive Approximation. Vol. 303 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg (1993). | MR | Zbl
and ,Inference for observations of integrated diffusion processes. Scand. J. Stat. 31 (2004) 417–429. | DOI | MR | Zbl
and ,On estimating the diffusion coefficient from discrete observations. J. Appl. Probab. 30 (1993) 790–804. | DOI | MR | Zbl
,Discrete sampling of an integrated diffusion process and parameter estimation of the diffusion coefficient. ESAIM: PS 4 (2000) 205–227. | DOI | Numdam | MR | Zbl
,Parameter estimation for a discretely observed integrated process. Scand. J. Stat. 33 (2006) 83–104. | DOI | MR | Zbl
,LAMN property for hidden processes: the case of integrated diffusions. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008) 104–128. | DOI | Numdam | MR | Zbl
and ,On the inverse of the first hitting time problem for bidimensional processes. J. Appl. Probab. 34 (1997) 610–622. | DOI | MR | Zbl
,Ergodicity and exponential β-mixing bounds for multidimensional diffusions with jumps. Stoch. Process. Appl. 117 (2007) 35–56. | DOI | MR | Zbl
,Ondelettes et opérateurs. I, in Actualités Mathématiques. [Current Mathematical Topics]. Hermann, Paris (1990). | MR | Zbl
,Nonparametric estimation of second-order stochastic differential equations. Econom. Theory 23 (2007) 880–898. | DOI | MR | Zbl
,Nonparametric adaptive estimation of the drift for a jump diffusion process. Stoch. Process. Appl. 124 (2014) 883–914. | DOI | MR | Zbl
,Nonparametric estimation for second-order diffusion models in high frequency data. Singap. Econ. Rev. 63 (2017) 1–31.
,Empirical likelihood inference for the second-order jump-diffusion model. Stat. Probab. Lett. 83 (2013) 184–195. | DOI | MR | Zbl
and ,Re-weighted nadaraya-watson estimation of second-order jump-diffusion model. J. Stat. Plan. Inference 143 (2013) 730–744. | DOI | MR | Zbl
, and ,Cité par Sources :