LAMN property for the drift and volatility parameters of a sde driven by a stable Lévy process
ESAIM: Probability and Statistics, Tome 23 (2019), pp. 136-175.

This work focuses on the local asymptotic mixed normality (LAMN) property from high frequency observations, of a continuous time process solution of a stochastic differential equation driven by a truncated α-stable process with index α ∈ (0, 2). The process is observed on the fixed time interval [0,1] and the parameters appear in both the drift coefficient and scale coefficient. This extends the results of Clément and Gloter [Stoch. Process. Appl. 125 (2015) 2316–2352] where the index α ∈ (1, 2) and the parameter appears only in the drift coefficient. We compute the asymptotic Fisher information and find that the rate in the LAMN property depends on the behavior of the Lévy measure near zero. The proof relies on the small time asymptotic behavior of the transition density of the process obtained in Clément et al. [Preprint HAL-01410989v2 (2017)].

Reçu le :
Accepté le :
DOI : 10.1051/ps/2018007
Classification : 60G51, 62F12, 60H07, 60F05, 60G52, 60J75
Mots-clés : Lévy process, stable process, Malliavin calculus for jump processes, LAMN property, parametric estimation
Clément, Emmanuelle 1 ; Gloter, Arnaud 1 ; Nguyen, Huong 1

1
@article{PS_2019__23__136_0,
     author = {Cl\'ement, Emmanuelle and Gloter, Arnaud and Nguyen, Huong},
     title = {LAMN property for the drift and volatility parameters of a sde driven by a stable {L\'evy} process},
     journal = {ESAIM: Probability and Statistics},
     pages = {136--175},
     publisher = {EDP-Sciences},
     volume = {23},
     year = {2019},
     doi = {10.1051/ps/2018007},
     mrnumber = {3945580},
     zbl = {1416.60052},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2018007/}
}
TY  - JOUR
AU  - Clément, Emmanuelle
AU  - Gloter, Arnaud
AU  - Nguyen, Huong
TI  - LAMN property for the drift and volatility parameters of a sde driven by a stable Lévy process
JO  - ESAIM: Probability and Statistics
PY  - 2019
SP  - 136
EP  - 175
VL  - 23
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2018007/
DO  - 10.1051/ps/2018007
LA  - en
ID  - PS_2019__23__136_0
ER  - 
%0 Journal Article
%A Clément, Emmanuelle
%A Gloter, Arnaud
%A Nguyen, Huong
%T LAMN property for the drift and volatility parameters of a sde driven by a stable Lévy process
%J ESAIM: Probability and Statistics
%D 2019
%P 136-175
%V 23
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2018007/
%R 10.1051/ps/2018007
%G en
%F PS_2019__23__136_0
Clément, Emmanuelle; Gloter, Arnaud; Nguyen, Huong. LAMN property for the drift and volatility parameters of a sde driven by a stable Lévy process. ESAIM: Probability and Statistics, Tome 23 (2019), pp. 136-175. doi : 10.1051/ps/2018007. http://archive.numdam.org/articles/10.1051/ps/2018007/

[1] Y. Aït-Sahalia and J. Jacod, Volatility estimators for discretely sampled Lévy processes. Ann. Stat. 35 (2007) 355–392. | DOI | MR | Zbl

[2] Y. Aït-Sahalia and J. Jacod, Fisher’s information for discretely sampled Lévy processes. Econometrica 76 (2008) 727–761. | DOI | MR | Zbl

[3] O.E. Barndorff-Nielsen, T. Mikosch and S.I. Resnick (Eds.), Theory and applications, Lévy Processes. Birkhäuser Boston, Inc., Boston, MA (2001). | DOI | MR | Zbl

[4] K. Bichteler, J.-B. Gravereaux and J. Jacod, Malliavin Calculus for Processes with Jumps. Vol. 2 of Stochastics Monographs. Gordon and Breach Science Publishers, New York (1987). | MR | Zbl

[5] E. Clément and A. Gloter, Local asymptotic mixed normality property for discretely observed stochastic differential equations driven by stable Lévy processes. Stoch. Process. Appl. 125 (2015) 2316–2352. | DOI | MR | Zbl

[6] E. Clément, A. Gloter and H. Nguyen, Asymptotics in Small Time for the Density of a Stochastic Differential Equation Driven by a Stable Lévy Process. Preprint (2017). | HAL | Numdam | MR

[7] V. Genon-Catalot and J. Jacod, On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Ann. Inst. Henri Poincaré Probab. Stat. 29 (1993) 119–151. | Numdam | MR | Zbl

[8] E. Gobet, Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach. Bernoulli 7 (2001) 899–912. | DOI | MR | Zbl

[9] E. Gobet, LAN property for ergodic diffusions with discrete observations. Ann. Inst. Henri Poincaré Probab. Stat. 38 (2002) 711–737. | DOI | Numdam | MR | Zbl

[10] J. Hájek, A characterization of limiting distributions of regular estimates. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 14 (1969/1970) 323–330. | DOI | MR | Zbl

[11] P. Hall and C.C. Heyde, Martingale Limit Theory and its Application. Probability and Mathematical Statistics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, London (1980). | MR | Zbl

[12] D. Ivanenko, A.M. Kulik and H. Masuda, Uniform LAN property of locally stable Lévy process observed at high frequency. ALEA Lat. Am. J. Probab. Math. Stat. 12 (2015) 835–862. | MR | Zbl

[13] J. Jacod, The Euler scheme for Lévy driven stochastic differential equations: limit theorems. Ann. Probab. 32 (2004) 1830–1872. | DOI | MR | Zbl

[14] P. Jeganathan, On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal. Sankhyā Ser. A 44 (1982) 173–212. | MR | Zbl

[15] P. Jeganathan, Some asymptotic properties of risk functions when the limit of the experiment is mixed normal. Sankhyā Ser. A 45 (1983) 66–87. | MR | Zbl

[16] B.-Y. Jing, X.-B. Kong and Z. Liu, Modeling high-frequency financial data by pure jump processes. Ann. Stat. 40 (2012) 759–784. | MR | Zbl

[17] R. Kawai and H. Masuda, On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling. Stat. Probab. Lett. 81 (2011) 460–469. | DOI | MR | Zbl

[18] R. Kawai and H. Masuda, Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling. ESAIM: PS 17 (2013) 13–32. | DOI | Numdam | MR | Zbl

[19] V.N. Kolokoltsov, Markov Processes, Semigroups and Generators. Vol. 38 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin (2011). | MR | Zbl

[20] X.-B. Kong, Z. Liu and B.-Y. Jing, Testing for pure-jump processes for high-frequency data. Ann. Stat. 43 (2015) 847–877. | MR | Zbl

[21] L. Le Cam and G.L. Yang, Asymptotics in Statistics: Some Basic Concepts. Springer Series in Statistics. Springer-Verlag, New York (1990). | DOI | MR | Zbl

[22] H. Masuda, Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density. J. Jpn. Stat. Soc. 39 (2009) 49–75. | DOI | MR

[23] H. Masuda, Non-Gaussian Quasi-Likelihood Estimation of sde Driven by Locally Stable Lévy Process. Preprint (2017). | arXiv | MR

[24] J. Picard, On the existence of smooth densities for jump processes. Probab. Theory Relat. Fields 105 (1996) 481–511. | DOI | MR | Zbl

Cité par Sources :