@article{AIHPB_2002__38_5_711_0, author = {Gobet, Emmanuel}, title = {LAN property for ergodic diffusions with discrete observations}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {711--737}, publisher = {Elsevier}, volume = {38}, number = {5}, year = {2002}, mrnumber = {1931584}, zbl = {1018.60076}, language = {en}, url = {http://archive.numdam.org/item/AIHPB_2002__38_5_711_0/} }
TY - JOUR AU - Gobet, Emmanuel TI - LAN property for ergodic diffusions with discrete observations JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2002 SP - 711 EP - 737 VL - 38 IS - 5 PB - Elsevier UR - http://archive.numdam.org/item/AIHPB_2002__38_5_711_0/ LA - en ID - AIHPB_2002__38_5_711_0 ER -
Gobet, Emmanuel. LAN property for ergodic diffusions with discrete observations. Annales de l'I.H.P. Probabilités et statistiques, Tome 38 (2002) no. 5, pp. 711-737. http://archive.numdam.org/item/AIHPB_2002__38_5_711_0/
[1] Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc. 73 (1967) 890-903. | MR | Zbl
,[2] Estimation of the coefficient of a diffusion from discrete observations, Stochastics 19 (1986) 263-284. | MR | Zbl
, ,[3] On estimating the diffusion coefficient, J. Appl. Probab. 24 (1987) 105-114. | MR | Zbl
,[4] Approximate discrete time schemes for statistics of diffusion processes, Statistics 20 (1989) 547-557. | MR | Zbl
,[5] Stochastic Differential Equations and Applications, Vol. 1, Academic Press, New York, 1975. | MR | Zbl
,[6] Maximum contrast estimation for diffusion processes from discrete observations, Statistics 21 (1990) 99-116. | MR | Zbl
,[7] On the estimation of the diffusion coefficient for multidimensional diffusion processes, Ann. Inst. H. Poincaré (Probab. Statist.) 29 (1993) 119-151. | Numdam | MR | Zbl
, ,[8] Estimation of the diffusion coefficient for diffusion processes: random sampling, Scandinavian J. Statist. 21 (1994) 193-221. | MR | Zbl
, ,[9] Local asymptotic mixed normality property for elliptic diffusion, Bernouilli 7 (6) (2001) 899-912. | MR | Zbl
,[10] Local asymptotic minimax admissibility in estimation, in: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley and Los Angeles, University of California Press, 1971, pp. 175-194. | MR | Zbl
,[11] Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, 1980. | MR
,[12] Local asymptotic normality and mixed normality for Markov statistical models, Probab. Theory Related Fields 86 (1990) 105-129. | MR | Zbl
, , ,[13] J. Jacod, Private communication.
[14] Limit Theorems for Stochastic Processes, Springer, Berlin, 1987. | MR | Zbl
, ,[15] Brownian Motion and Stochastic Calculus, Springer, 1998. | MR | Zbl
, ,[16] Estimation of an ergodic diffusion from discrete observations, Scandinavian J. Statist. 24 (1997) 211-229. | MR | Zbl
,[17] Stochastic differential equations and stochastic flows of diffeomorphisms, in: Ecole d'Eté de Probabilités de St-Flour XII, 1982, Lecture Notes in Math., 1097, Springer, 1984, pp. 144-305. | MR | Zbl
,[18] Limits of experiments, in: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley and Los Angeles, University of California Press, 1971, pp. 245-261. | Zbl
,[19] Asymptotics in Statistics, Springer, 1990. | MR | Zbl
, ,[20] On conditional diffusion processes, Proc. Royal Soc. Edinburgh 115 A (1990) 243-255. | MR | Zbl
, ,[21] Malliavin Calculus and Related Topics, Springer, 1995. | MR | Zbl
,[22] Asymptotic theory for non-linear least square estimator for diffusion processes, Math. Operationsforsch. Statist. Ser. Stat. 14 (1983) 195-209. | MR | Zbl
,[23] Statistical Inference for Diffusion Type Processes, Kendall's Library of Statistics, 8, Edward Arnold, London, Oxford University Press, New York, 1999. | MR | Zbl
,[24] Estimation for diffusion processes from discrete observations, J. Multivariate Anal. 41 (1992) 220-242. | MR | Zbl
,[25] Asymptotic expansions of maximum likelihood estimators for small diffusions via the theory of Malliavin-Watanabe, Probab. Theory Related Fields 92 (1992) 275-311. | Zbl
,[26] Asymptotic expansions for perturbed systems on Wiener space, maximum likelihood estimators, J. Multivariate Anal. 57 (1996) 1-36. | MR | Zbl
,