Empirical processes for recurrent and transient random walks in random scenery
ESAIM: Probability and Statistics, Tome 24 (2020), pp. 127-137.

In this paper, we are interested in the asymptotic behaviour of the sequence of processes (W$$(s,t))$$ with

$$

where (ξ$$, x ∈ ℤ$$) is a sequence of independent random variables uniformly distributed on [0, 1] and (S$$)$$ is a random walk evolving in ℤ$$, independent of the ξ’s. In M. Wendler [Stoch. Process. Appl. 126 (2016) 2787–2799], the case where (S$$)$$ is a recurrent random walk in ℤ such that (n$$S$$)$$ converges in distribution to a stable distribution of index α, with α ∈ (1, 2], has been investigated. Here, we consider the cases where (S$$)$$ is either:

(a) a transient random walk in ℤ$$,

(b) a recurrent random walk in ℤ$$ such that (n$$S$$)$$ converges in distribution to a stable distribution of index d ∈{1, 2}.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ps/2019030
Classification : 60G50, 60F17, 62G30
Mots-clés : Random walk, random scenery, empirical process
@article{PS_2020__24_1_127_0,
     author = {Guillotin-Plantard, Nadine and P\`ene, Fran\c{c}oise and Wendler, Martin},
     title = {Empirical processes for recurrent and transient random walks in random scenery},
     journal = {ESAIM: Probability and Statistics},
     pages = {127--137},
     publisher = {EDP-Sciences},
     volume = {24},
     year = {2020},
     doi = {10.1051/ps/2019030},
     mrnumber = {4071316},
     zbl = {1447.60073},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2019030/}
}
TY  - JOUR
AU  - Guillotin-Plantard, Nadine
AU  - Pène, Françoise
AU  - Wendler, Martin
TI  - Empirical processes for recurrent and transient random walks in random scenery
JO  - ESAIM: Probability and Statistics
PY  - 2020
SP  - 127
EP  - 137
VL  - 24
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2019030/
DO  - 10.1051/ps/2019030
LA  - en
ID  - PS_2020__24_1_127_0
ER  - 
%0 Journal Article
%A Guillotin-Plantard, Nadine
%A Pène, Françoise
%A Wendler, Martin
%T Empirical processes for recurrent and transient random walks in random scenery
%J ESAIM: Probability and Statistics
%D 2020
%P 127-137
%V 24
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2019030/
%R 10.1051/ps/2019030
%G en
%F PS_2020__24_1_127_0
Guillotin-Plantard, Nadine; Pène, Françoise; Wendler, Martin. Empirical processes for recurrent and transient random walks in random scenery. ESAIM: Probability and Statistics, Tome 24 (2020), pp. 127-137. doi : 10.1051/ps/2019030. http://archive.numdam.org/articles/10.1051/ps/2019030/

[1] A. Asselah and F. Castell, Random walk in random scenery and self-intersection local times in dimensions d ≥ 5. Prob. Theory Relat. Fields 138 (2007) 1–32. | DOI | MR | Zbl

[2] I. Berkes and W. Philipp, An almost sure invariance principle for the empirical distribution function of mixing random variables. Prob. Theory Relat. Fields 41 (1977) 115–137. | MR | Zbl

[3] P.J. Bickel and M.J. Wichura, Convergence criteria for multiparameter stochastic processes and some applications. Ann. Math. Statist. 42 (1971) 1656–1670. | DOI | MR | Zbl

[4] P. Billingsley, Convergence of probability measures. John Wiley & Sons (1999). | DOI | MR | Zbl

[5] E. Bolthausen, A central limit theorem for two-dimensional random walks in random sceneries. Ann. Probab. 17 (1989) 108–115. | DOI | MR | Zbl

[6] A.N. Borodin, A limit theorem for sums of independent random variables defined on a recurrent random walk. Dokl. Akad. Nauk SSSR 246 (1979) 786–787. | MR | Zbl

[7] A.N. Borodin, Limit theorems for sums of independent random variables defined on a transient random walk. In Vol. 85 of Investigations in the theory of probability distributions, IV (1979) 17–29. | MR

[8] P. Cabus and N. Guillotin-Plantard, Functional limit theorems for U-statistics indexed by a random walk. Stoch. Process. Appl. 101 (2002) 143–160. | DOI | MR | Zbl

[9] E. Carlstein, Nonparametric change-point estimation. Ann. Stat. 16 (1988) 188–197. | DOI | MR | Zbl

[10] F. Castell and F. Pradeilles, Annealed large deviations for diffusions in a random Gaussian shear flow drift. Stoch. Process. Appl. 94 (2001) 171–197. | MR | Zbl

[11] F. Castell, Moderate deviations for diffusions in a random Gaussian shear flow drift. Ann. Inst. Henri Poincaré 40 (2004) 337–366. | Numdam | MR | Zbl

[12] F. Castell, N. Guillotin-Plantard and F. Pène, Limit theorems for one and two-dimensional random walks in random scenery. Ann. Inst. Henri Poincaré 49 (2013) 506–528. | Numdam | MR | Zbl

[13] J. Černý, Moments and distribution of the local time of a two-dimensional random walk. Stoch. Process. Appl. 117 (2007) 262–270. | MR | Zbl

[14] S. Cohen and C. Dombry, Convergence of dependent walks in a random scenery to fBm-local time fractional stable motions. J. Math. Kyoto Univ. 49 (2009) 267–286. | MR | Zbl

[15] E. Csáki and P. Révész, Strong invariance for local times. Z. Wahrsch. Verw. Gebiete 62 (1983) 263–278. | MR | Zbl

[16] E. Csáki, W. König and Z. Shi, An embedding for the Kesten-Spitzer random walk in random scenery. Stoch. Process. Appl. 82 (1999) 283–292. | MR | Zbl

[17] J. Dedecker, H. Dehling and M.S. Taqqu, Weak convergence of the empirical process of intermittent maps in L2 under long-range dependence. Stoch. Dyn. 15 (2015) 1550008. | MR | Zbl

[18] H. Dehling and M. Taqqu, The empirical process of some long-range dependent sequences with an application to U-statistics. Ann. Stat. 17 (1989) 1767–1783. | MR | Zbl

[19] G. Deligiannidis and S.A. Utev, Asymptotic variance of the self-intersections of stable random walks using Darboux-Wiener theory. Siber. Math. J. 52 (2011) 639–650. | Zbl

[20] F. Den Hollander and J.E. Steif, Random walk in random scenery: a survey of some recent results. Dynamics & Stochastics. In Vol. 48 of IMS Lect. Notes Monogr. Ser. (2006) 53–65. | DOI | MR | Zbl

[21] B. Franke, F. Pene and M. Wendler, Stable limit theorem for U-statistic processes indexed by a random walk. Electr. Commun. Probab. 22 (2017). | MR | Zbl

[22] N. Gantert, W. König and Z. Shi, Annealed deviations of random walk in random scenery. Ann. Inst. Henri Poincaré Probab. Statist. 43 (2007) 47–76. | DOI | Numdam | MR | Zbl

[23] L. Giraitis, R. Leipus and D. Surgailis, The change-point problem for dependent observations. J. Statist. Plann. Inference 53 (1996) 297–310. | DOI | MR | Zbl

[24] N. Guillotin-Plantard and V. Ladret, Limit theorems for U-statistics indexed by a one dimensional random walk. ESAIM: PS 9 (2005) 95–115. | Numdam | MR | Zbl

[25] N. Guillotin-Plantard and J. Poisat, Quenched central limit theorems for random walks in random scenery. Stoch. Process. Appl. 123 (2013) 1348–1367. | DOI | MR | Zbl

[26] N. Guillotin-Plantard and C. Prieur, Limit theorem for random walk in weakly dependent random scenery. Ann. Inst. Henri Poincaré Prob. Stat. 46 (2010) 1178–1194. | DOI | Numdam | MR | Zbl

[27] N. Guillotin-Plantard and C. Prieur, Central limit theorem for sampled sums of dependent random variables. ESAIM: PS 14 (2010) 299–314. | DOI | Numdam | MR | Zbl

[28] N. Guillotin-Plantard and R.S. Dos Santos, The quenched limiting distributions of a charged-polymer model. Ann. Inst. Henri Poincaré Probab. Stat. 2 (2016) 703–725. | MR | Zbl

[29] A. Inoue, Testing for distributional change in time series. Econometric theory 17 (2001) 156–187. | DOI | MR | Zbl

[30] H. Kesten and F. Spitzer, A limit theorem related to a new class of self similar processes. Z. Wahrsch. Verw. Gebiete 50 (1979) 5–25. | MR | Zbl

[31] J.C. Kiefer, Skorohod embedding of multivariate RV’s, and the sample DF. Z. Wahrsch. Verw. Gebiete 24 (1979) 1–35. | MR | Zbl

[32] D. Khoshnevisan and T.M. Lewis, A law of iterated logarithm for stable processes in random scenery. Stoch. Process. Appl. 74 (1998) 89–121. | MR | Zbl

[33] D.W. Müller, On Glivenko-Cantelli convergence. Z. Wahrsch. Verw. Gebiete 16 (1970) 195–210. | MR | Zbl

[34] F. Spitzer, Principles of random walks. Vol. 34 of Graduate Texts Math. Springer-Verlag (1976). | MR | Zbl

[35] J. Tewes, Change-point tests under local alternatives for long-range dependent processes. Electr. J. Stat. 11 (2017) 2461–2498. | MR | Zbl

[36] M. Wendler, The sequential empirical process of a random walk in random scenery. Stoch. Process. Appl. 126 (2016) 2787–2799. | MR | Zbl

Cité par Sources :

Supported by ANR MALIN ANR-16-CE93-0003.