Let be the mode of a probability density and its kernel estimator. In the case is nondegenerate, we first specify the weak convergence rate of the multivariate kernel mode estimator by stating the central limit theorem for . Then, we obtain a multivariate law of the iterated logarithm for the kernel mode estimator by proving that, with probability one, the limit set of the sequence suitably normalized is an ellipsoid. We also give a law of the iterated logarithm for the norms, , of . Finally, we consider the case is degenerate and give the exact weak and strong convergence rate of in the univariate framework.
Mots-clés : density, mode, kernel estimator, central limit theorem, law of the iterated logarithm
@article{PS_2003__7__1_0, author = {Mokkadem, Abdelkader and Pelletier, Mariane}, title = {The law of the iterated logarithm for the multivariate kernel mode estimator}, journal = {ESAIM: Probability and Statistics}, pages = {1--21}, publisher = {EDP-Sciences}, volume = {7}, year = {2003}, doi = {10.1051/ps:2003004}, mrnumber = {1956072}, zbl = {1013.62032}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps:2003004/} }
TY - JOUR AU - Mokkadem, Abdelkader AU - Pelletier, Mariane TI - The law of the iterated logarithm for the multivariate kernel mode estimator JO - ESAIM: Probability and Statistics PY - 2003 SP - 1 EP - 21 VL - 7 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps:2003004/ DO - 10.1051/ps:2003004 LA - en ID - PS_2003__7__1_0 ER -
%0 Journal Article %A Mokkadem, Abdelkader %A Pelletier, Mariane %T The law of the iterated logarithm for the multivariate kernel mode estimator %J ESAIM: Probability and Statistics %D 2003 %P 1-21 %V 7 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps:2003004/ %R 10.1051/ps:2003004 %G en %F PS_2003__7__1_0
Mokkadem, Abdelkader; Pelletier, Mariane. The law of the iterated logarithm for the multivariate kernel mode estimator. ESAIM: Probability and Statistics, Tome 7 (2003), pp. 1-21. doi : 10.1051/ps:2003004. http://archive.numdam.org/articles/10.1051/ps:2003004/
[1] The law of the iterated logarithm for a triangular array of empirical processes. Electron. J. Probab. 2 (1997) 1-39. | MR | Zbl
,[2] Normalité asymptotique d'estimateurs convergents du mode conditionnel. Can. J. Statist. 26 (1998) 365-380. | Zbl
, and ,[3] Estimation of the mode. Ann. Inst. Stat. Math. 16 (1964) 31-41. | MR | Zbl
,[4] A note on prediction via estimation of the conditional mode function. J. Statist. Planning Inference 15 (1987) 227-236. | MR | Zbl
, and ,[5] Optimum kernel estimates of the mode. Ann. Statist. 8 (1980) 870-882. | MR | Zbl
,[6] The asymptotic distributions of kernel estimators of the mode. Z. Warsch. Verw. Geb. 59 (1982) 279-290. | MR | Zbl
,[7] An empirical process approach to the uniform consistency of kernel-type functions estimators. J. Theoret. Probab. 13 (2000) 1-37. | MR | Zbl
and ,[8] Rates of strong uniform consistency for multivariate kernel density estimators, Preprint. Paris VI (2000). | Numdam | MR
and ,[9] Some direct estimates of the mode. Ann. Math. Statist. 36 (1965) 131-138. | MR | Zbl
,[10] On the minimisation of error in mode estimation. Ann. Statist. 23 (1995) 2264-2284. | MR | Zbl
and ,[11] Laws of the iterated logarithm for nonparametric density estimators. Z. Warsch. Verw. Geb. 56 (1981) 47-61. | MR | Zbl
,[12] Asymptotic theory of Grenander's mode estimator. Z. Warsch. Verw. Geb. 60 (1982) 315-334. | Zbl
,[13] On asymptotic normality of the sample mode of multivariate distributions. Theory Probab. Appl. 18 (1973) 836-842. | MR | Zbl
,[14] Vitesse de convergence presque sûre de l'estimateur à noyau du mode. C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 637-640. | Zbl
and ,[15] Asymptotic normality of kernel estimators of the conditional mode under strong mixing hypothesis. J. Nonparametr. Statist. 11 (1999) 413-442. | Zbl
and ,[16] A law of the iterated logarithm for the kernel mode estimator. Statist. Probab. Lett. (submitted).
and ,[17] On non-parametric estimates of density functions and regression curves. Theory Probab. Appl. 10 (1965) 186-190. | MR | Zbl
,[18] A note on ergodic processes prediction via estimation of the conditional mode function. Scand. J. Stat. 24 (1997) 231-239. | Zbl
,[19] On estimating probability density function and mode. Ann. Math. Statist. 33 (1962) 1065-1076. | MR | Zbl
,[20] Convergence of Stochastic Processes. Springer, New York (1984). | MR | Zbl
,[21] A nonparametric conditional mode estimate. J. Nonparametr. Statist. 8 (1997) 253-266. | Zbl
and ,[22] On weak convergence and optimality of kernel density estimates of the mode. Ann. Statist. 16 (1988) 629-647. | MR | Zbl
,[23] Consistency of estimators for multivariate density functions and for the mode. Sankhya Ser. A 39 (1977) 243-250. | MR | Zbl
,[24] Consistency in nonparametric estimation of the mode. Ann. Statist. 3 (1975) 698-706. | MR | Zbl
,[25] Nonparametric estimation of the mode of a multivariate density. South African Statist. J. 7 (1973) 109-117. | MR | Zbl
,[26] Nonparametric estimation of the conditional mode. Commun Stat., Theory Methods 19 (1990) 4515-4524. | MR | Zbl
and ,[27] Recurrent estimation of the mode of a multidimensional distribution. Problems Inform. Transmission 26 (1990) 31-37. | MR | Zbl
,[28] On strong consistency of density estimates. Ann. Math. Statist. 40 (1969) 1765-1772. | MR | Zbl
,[29] On estimation of the mode. Ann. Math. Statist. 38 (1967) 1446-1455. | MR | Zbl
,[30] A note on density mode estimation. Statist. Probab. Lett. 26 (1996) 297-307. | MR | Zbl
,[31] Sequential estimation of a continuous probability density function and the mode. Bull. Math. Statist. 14 (1971) 1-12. | MR | Zbl
,Cité par Sources :