We present here a new proof of the theorem of Birman and Solomyak on the metric entropy of the unit ball of a Besov space on a regular domain of The result is: if then the Kolmogorov metric entropy satisfies . This proof takes advantage of the representation of such spaces on wavelet type bases and extends the result to more general spaces. The lower bound is a consequence of very simple probabilistic exponential inequalities. To prove the upper bound, we provide a new universal coding based on a thresholding-quantizing procedure using replication.
Mots-clés : entropy, coding, Besov spaces, wavelet bases, replication
@article{PS_2003__7__239_0, author = {Kerkyacharian, G\'erard and Picard, Dominique}, title = {Replicant compression coding in {Besov} spaces}, journal = {ESAIM: Probability and Statistics}, pages = {239--250}, publisher = {EDP-Sciences}, volume = {7}, year = {2003}, doi = {10.1051/ps:2003011}, mrnumber = {1987788}, zbl = {1031.41014}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps:2003011/} }
TY - JOUR AU - Kerkyacharian, Gérard AU - Picard, Dominique TI - Replicant compression coding in Besov spaces JO - ESAIM: Probability and Statistics PY - 2003 SP - 239 EP - 250 VL - 7 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps:2003011/ DO - 10.1051/ps:2003011 LA - en ID - PS_2003__7__239_0 ER -
Kerkyacharian, Gérard; Picard, Dominique. Replicant compression coding in Besov spaces. ESAIM: Probability and Statistics, Tome 7 (2003), pp. 239-250. doi : 10.1051/ps:2003011. http://archive.numdam.org/articles/10.1051/ps:2003011/
[1] Deux remarques sur l'estimation. C. R. Acad. Sci. Paris Sér. I Math. 296 (1983) 1021-1024. | Zbl
,[2] Sur un théorème de minimax et son application aux tests. Probab. Math. Statist. 3 (1984) 259-282. | MR | Zbl
,[3] An adaptative compression algorithm in Besov spaces. Constr. Approx. 16 (2000) 1-36. | MR | Zbl
and ,[4] Piecewise-polynomial approximation of functions of the classes . Mat. Sbornik 73 (1967) 295-317. | MR | Zbl
and ,[5] Multiscale methods on bounded domains. Trans. AMS 352 (2000) 3651-3685. | MR | Zbl
, and ,[6] Tree approximation and optimal encoding. Appl. Comput. Harmon. Anal. 11 (2001) 192-226. | MR | Zbl
, , and ,[7] Element of Information Theory. Wiley Interscience (1991). | MR | Zbl
and ,[8] On minimax wavelet estimators. Appl. Comput. Harmon. Anal. 3 (1996) 215-228. | MR | Zbl
and ,[9] Multiscale characterization of Besov spaces on bounded domains. J. Approx. Theory 93 (1998) 273-292. | MR | Zbl
, and ,[10] Nonlinear approximation. Cambridge University Press, Acta Numer. 7 (1998) 51-150. | MR | Zbl
,[11] Constructive Approximation. Springer-Verlag, New York (1993). | MR | Zbl
and ,[12] Unconditional bases and bit-level compression. Appl. Comput. Harmon. Anal. 3 (1996) 388-392. | MR | Zbl
,[13] Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 (1963) 13-30. | MR | Zbl
,[14] Wavelet, Approximation and Statistical Applications. Springer Verlag, New York, Lecture Notes in Statist. 129 (1998). | MR | Zbl
, , and ,[15] Thresholding algorithms, maxisets and well-concentrated bases, with discussion. Test 9 (2000) 283-345. | MR | Zbl
and ,[16] Minimax or maxisets? Bernoulli 8 (2002) 219-253. | MR | Zbl
and ,[17] Entropy, Universal coding, Approximation and bases properties. Technical Report (2001). | Zbl
and ,[18] Density Estimation by Kernel and Wavelets methods - Optimality of Besov spaces. Statist. Probab. Lett. 18 (1993) 327-336. | Zbl
and ,[19] -entropy and -capacity. Uspekhi Mat. Nauk 14 (1959) 3-86. (Engl. Translation: Amer. Math. Soc. Transl. Ser. 2 17, 277-364.) | MR | Zbl
and ,[20] Convergence of estimator under dimensionality restrictions. Ann. Statist. 1 (1973) 38-53. | MR | Zbl
,[21] Metric dimension and statistical estimation, in Advances in mathematical sciences: CRM's 25 years. Montreal, PQ (1994) 303-311. | Zbl
,[22] Metric entropy and approximation. Bull. Amer. Math. Soc. 72 (1966) 903-937. | MR | Zbl
,[23] Approximation of functions of several variables and imbedding theorems (Russian), Second Ed. Moskva, Nauka (1977). English translation of the first Ed., Berlin (1975). | MR | Zbl
,[24] Limit Theorems of Probability Theory: Sequences of independent Random Variables. Oxford University Press (1995). | MR | Zbl
,[25] Empirical processes in M-estimation. Cambridge University Press (2000).
,Cité par Sources :