Stability of solutions of BSDEs with random terminal time
ESAIM: Probability and Statistics, Tome 10 (2006), pp. 141-163.

In this paper, we study the stability of the solutions of Backward Stochastic Differential Equations (BSDE for short) with an almost surely finite random terminal time. More precisely, we are going to show that if (W n ) is a sequence of scaled random walks or a sequence of martingales that converges to a brownian motion W and if (τ n ) is a sequence of stopping times that converges to a stopping time τ, then the solution of the BSDE driven by W n with random terminal time τ n converges to the solution of the BSDE driven by W with random terminal time τ.

DOI : 10.1051/ps:2006006
Classification : 60H10, 60Fxx, 60G40
Mots-clés : backward stochastic differential equations (BSDE), stability of BSDEs, weak convergence of filtrations, stopping times
@article{PS_2006__10__141_0,
     author = {Toldo, Sandrine},
     title = {Stability of solutions of {BSDEs} with random terminal time},
     journal = {ESAIM: Probability and Statistics},
     pages = {141--163},
     publisher = {EDP-Sciences},
     volume = {10},
     year = {2006},
     doi = {10.1051/ps:2006006},
     mrnumber = {2218406},
     zbl = {1185.60064},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps:2006006/}
}
TY  - JOUR
AU  - Toldo, Sandrine
TI  - Stability of solutions of BSDEs with random terminal time
JO  - ESAIM: Probability and Statistics
PY  - 2006
SP  - 141
EP  - 163
VL  - 10
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps:2006006/
DO  - 10.1051/ps:2006006
LA  - en
ID  - PS_2006__10__141_0
ER  - 
%0 Journal Article
%A Toldo, Sandrine
%T Stability of solutions of BSDEs with random terminal time
%J ESAIM: Probability and Statistics
%D 2006
%P 141-163
%V 10
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps:2006006/
%R 10.1051/ps:2006006
%G en
%F PS_2006__10__141_0
Toldo, Sandrine. Stability of solutions of BSDEs with random terminal time. ESAIM: Probability and Statistics, Tome 10 (2006), pp. 141-163. doi : 10.1051/ps:2006006. http://archive.numdam.org/articles/10.1051/ps:2006006/

[1] F. Antonelli and A. Kohatsu-Higa, Filtration stability of backward SDE's. Stochastic Anal. Appl. 18 (2000) 11-37. | Zbl

[2] P. Billingsley, Convergence of Probability Measures, Second Edition. Wiley and Sons, New York (1999). | MR | Zbl

[3] P. Briand, B. Delyon and J. Mémin, Donsker-type theorem for BSDEs. Electron. Comm. Probab. 6 (2001) 1-14 (electronic). | Zbl

[4] P. Briand, B. Delyon and J. Mémin, On the robustness of backward stochastic differential equations. Stochastic Process. Appl. 97 (2002) 229-253. | Zbl

[5] K.L. Chung and Z.X. Zhao, From Brownian motion to Schrödinger's equation, Springer-Verlag, Berlin Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 312 (1995). | Zbl

[6] F. Coquet, V. Mackevičius and J. Mémin, Stability in 𝐃 of martingales and backward equations under discretization of filtration. Stochastic Process. Appl. 75 (1998) 235-248. | Zbl

[7] F. Coquet, V. Mackevičius and J. Mémin, Corrigendum to: “Stability in 𝐃 of martingales and backward equations under discretization of filtration”. Stochastic Process. Appl. 82 (1999) 335-338. | Zbl

[8] F. Coquet, J. Mémin and L. Słomiński, On weak convergence of filtrations. Séminaire de probabilités XXXV, Springer-Verlag, Berlin Heidelberg New York, Lect. Notes Math. 1755 (2001) 306-328. | Numdam | Zbl

[9] J. Haezendonck and F. Delbaen, Caractérisation de la tribu des événements antérieurs à un temps d'arrêt pour un processus stochastique. Acad. Roy. Belg., Bulletin de la Classe Scientifique 56 (1970) 1085-1092. | Zbl

[10] D.N. Hoover, Convergence in distribution and Skorokhod convergence for the general theory of processes. Probab. Theory Related Fields 89 (1991) 239-259. | Zbl

[11] J. Jacod and A.N. Shiryaev, Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin Heidelberg New York (1987). | MR | Zbl

[12] I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Second Edition. Springer-Verlag, Berlin Heidelberg New York (1991). | MR | Zbl

[13] J. Ma, P. Protter, J. San Martín and S. Torres, Numerical method for backward stochastic differential equations. Ann. Appl. Probab. 12 (2002) 302-316. | Zbl

[14] S. Peng, Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stoch. Stoch. Rep. 37 (1991) 61-74. | Zbl

[15] M. Royer, BSDEs with a random terminal time driven by a monotone generator and their links with PDEs. Stoch. Stoch. Rep. 76 (2004) 281-307. | Zbl

Cité par Sources :