For a sequence of blockwise -dependent random variables , conditions are provided under which almost surely where is a sequence of positive constants. The results are new even when . As special case, the Brunk-Chung strong law of large numbers is obtained for sequences of independent random variables. The current work also extends results of Móricz [Proc. Amer. Math. Soc. 101 (1987) 709-715], and Gaposhkin [Teor. Veroyatnost. i Primenen. 39 (1994) 804-812]. The sharpness of the results is illustrated by examples.
Mots-clés : strong law of large numbers, almost sure convergence, blockwise $m$-dependent random variables
@article{PS_2006__10__258_0, author = {Thanh, Le Van}, title = {On the {Brunk-Chung} type strong law of large numbers for sequences of blockwise $m$-dependent random variables}, journal = {ESAIM: Probability and Statistics}, pages = {258--268}, publisher = {EDP-Sciences}, volume = {10}, year = {2006}, doi = {10.1051/ps:2006010}, mrnumber = {2219343}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps:2006010/} }
TY - JOUR AU - Thanh, Le Van TI - On the Brunk-Chung type strong law of large numbers for sequences of blockwise $m$-dependent random variables JO - ESAIM: Probability and Statistics PY - 2006 SP - 258 EP - 268 VL - 10 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps:2006010/ DO - 10.1051/ps:2006010 LA - en ID - PS_2006__10__258_0 ER -
%0 Journal Article %A Thanh, Le Van %T On the Brunk-Chung type strong law of large numbers for sequences of blockwise $m$-dependent random variables %J ESAIM: Probability and Statistics %D 2006 %P 258-268 %V 10 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps:2006010/ %R 10.1051/ps:2006010 %G en %F PS_2006__10__258_0
Thanh, Le Van. On the Brunk-Chung type strong law of large numbers for sequences of blockwise $m$-dependent random variables. ESAIM: Probability and Statistics, Tome 10 (2006), pp. 258-268. doi : 10.1051/ps:2006010. http://archive.numdam.org/articles/10.1051/ps:2006010/
[1] Prokhorov blocks and strong law of large numbers under rearrangements. J. Theoret. Probab. 17 (2004) 647-672. | Zbl
, and ,[2] Probability Theory: Independence, Interchangeability, Martingales. 3rd ed. Springer-Verlag, New York (1997). | MR | Zbl
and ,[3] On the strong law of large numbers for blockwise independent and blockwise orthogonal random variables. Teor. Veroyatnost. i Primenen. 39 (1994) 804-812 (in Russian). English translation in Theory Probab. Appl. 39 (1994) 667-684 (1995). | Zbl
, , 4th ed. Springer-Verlag, New York (1977). |[5] Strong limit theorems for blockwise -dependent and blockwise quasiorthogonal sequences of random variables. Proc. Amer. Math. Soc. 101 (1987) 709-715. | Zbl
,Cité par Sources :