Stein estimation for infinitely divisible laws
ESAIM: Probability and Statistics, Tome 10 (2006), pp. 269-276.

Unbiased risk estimation, à la Stein, is studied for infinitely divisible laws with finite second moment.

DOI : 10.1051/ps:2006011
Classification : 62G07, 62C20, 60G70, 41A25
Mots-clés : wavelets, thresholding, minimax
@article{PS_2006__10__269_0,
     author = {Averkamp, R. and Houdr\'e, C.},
     title = {Stein estimation for infinitely divisible laws},
     journal = {ESAIM: Probability and Statistics},
     pages = {269--276},
     publisher = {EDP-Sciences},
     volume = {10},
     year = {2006},
     doi = {10.1051/ps:2006011},
     mrnumber = {2247922},
     zbl = {1187.62070},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps:2006011/}
}
TY  - JOUR
AU  - Averkamp, R.
AU  - Houdré, C.
TI  - Stein estimation for infinitely divisible laws
JO  - ESAIM: Probability and Statistics
PY  - 2006
SP  - 269
EP  - 276
VL  - 10
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps:2006011/
DO  - 10.1051/ps:2006011
LA  - en
ID  - PS_2006__10__269_0
ER  - 
%0 Journal Article
%A Averkamp, R.
%A Houdré, C.
%T Stein estimation for infinitely divisible laws
%J ESAIM: Probability and Statistics
%D 2006
%P 269-276
%V 10
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps:2006011/
%R 10.1051/ps:2006011
%G en
%F PS_2006__10__269_0
Averkamp, R.; Houdré, C. Stein estimation for infinitely divisible laws. ESAIM: Probability and Statistics, Tome 10 (2006), pp. 269-276. doi : 10.1051/ps:2006011. http://archive.numdam.org/articles/10.1051/ps:2006011/

[1] R. Averkamp and C. Houdré, Wavelet Thresholding for non necessarily Gaussian Noise: Idealism. Ann. Statist. 31 (2003) 110-151. | Zbl

[2] R. Averkamp and C. Houdré, Wavelet Thresholding for non necessarily Gaussian Noise: Functionality. Ann. Statist. 33 (2005) 2164-2193. | Zbl

[3] D.L Donoho and I.M. Johnstone, Adapting to Unknown Smoothness via Wavelet Shrinkage. J. Amer. Statist. Assoc. 90 (1995) 1200-1224. | Zbl

[4] D.L. Donoho, I.M. Johnstone, G. Kerkyacharian and D. Picard, Wavelet Shrinkage: Asymptotia? J. Roy. Statist. Soc. Ser. B 57 (1995) 301-369. | Zbl

[5] W. Feller, An Introduction to Probability Theory and its Applications, Vol. II. John Wiley & Sons (1966). | MR | Zbl

[6] C. Stein, Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9 (1981) 1135-1151. | Zbl

Cité par Sources :