We study the probability distribution of the location of a particle performing a cyclic random motion in
Mots-clés : cyclic random motions, linear image of a random vector, singular and absolutely continuous measures, convexity, hyper-Bessel functions with several arguments
@article{PS_2006__10__277_0, author = {Lachal, Aim\'e}, title = {Cyclic random motions in $\mathbb {R}^d$-space with $n$ directions}, journal = {ESAIM: Probability and Statistics}, pages = {277--316}, publisher = {EDP-Sciences}, volume = {10}, year = {2006}, doi = {10.1051/ps:2006012}, mrnumber = {2247923}, zbl = {1183.33028}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps:2006012/} }
TY - JOUR AU - Lachal, Aimé TI - Cyclic random motions in $\mathbb {R}^d$-space with $n$ directions JO - ESAIM: Probability and Statistics PY - 2006 SP - 277 EP - 316 VL - 10 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps:2006012/ DO - 10.1051/ps:2006012 LA - en ID - PS_2006__10__277_0 ER -
Lachal, Aimé. Cyclic random motions in $\mathbb {R}^d$-space with $n$ directions. ESAIM: Probability and Statistics, Tome 10 (2006), pp. 277-316. doi : 10.1051/ps:2006012. http://archive.numdam.org/articles/10.1051/ps:2006012/
[1] Setups in polling models: does it make sense to set up if no work is waiting? J. Appl. Prob. 36 (1999) 585-592. | Zbl
, and ,[2] On random motions with velocities alternating at Erlang-distributed random times. Adv. Appl. Prob. 33 (2001) 690-701. | Zbl
,[3] Exact transient analysis of a planar random motion with three directions. Stoch. Stoch. Rep. 72 (2002) 175-189. | Zbl
,[4] Works of the State Optical Institute, 4, Leningrad Opt. Inst. 34 (1926) (in Russian).
,[5] On diffusion by discontinuous movements, and on the telegraph equation. Quart. J. Mech. Appl. Math. 4 (1951) 129-156. | Zbl
,[6] Theory of random evolutions with applications to partial differential equations. Trans. Amer. Math. Soc. 156 (1971) 405-418. | Zbl
and ,[7] A stochastic model related to the telegrapher's equation. Rocky Mountain J. Math. 4 (1974) 497-509. | Zbl
,[8] Analysis of a finite-velocity planar random motion with reflection. Theory Prob. Appl. 46 (2002) 132-140. | Zbl
and ,
[9] Random motions in
[10] Bose-Einstein-type statistics, order statistics and planar random motions with three directions. Adv. Appl. Probab. 36(3) (2004) 937-970. | Zbl
and ,[11] An alternating motion with stops and the related planar, cyclic motion with four directions. Adv. Appl. Probab. 35(4) (2003) 1153-1168. | Zbl
, and ,[12] Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff's laws. Stoch. Proc. Appl. 34 (1990) 49-66. | Zbl
,[13] Exact joint distribution in a model of planar random motion. Stoch. Stoch. Rep. 69 (2000) 1-10. | Zbl
,[14] Bessel functions of third order and the distribution of cyclic planar motions with three directions. Stoch. Stoch. Rep. 74 (2002) 617-631. | Zbl
,[15] Exact distribution for a planar random motion model, controlled by a fourth-order hyperbolic equation. Theory Prob. Appl. 41 (1996) 379-387. | Zbl
and ,[16] Planar random motions with drift. J. Appl. Math. Stochastic Anal. 15 (2002) 205-221. | Zbl
and ,[17] Exact distributions of random motions in inhomogeneous media, submitted.
and ,[18] Planar random evolution with three directions, in Exploring stochastic laws, A.V. Skorokhod and Yu.V. Borovskikh, Eds., VSP, Utrecht (1995) 357-366. | Zbl
and ,
[19] A cyclic random motion in
[20] Lectures on random evolution. World Scientific, River Edge (1991). | MR | Zbl
,
[21] Markovian random evolutions in
[22] Analytical theory of Markov random evolutions in
- Planar random motions in a vortex, Journal of Theoretical Probability, Volume 38 (2025) no. 1, p. 42 (Id/No 4) | DOI:10.1007/s10959-024-01378-6 | Zbl:7939472
- Multidimensional random motions with a natural number of finite velocities, Advances in Applied Probability, Volume 56 (2024) no. 3, p. 1033 | DOI:10.1017/apr.2024.26
- A cyclic random motion in
driven by geometric counting processes, Methodology and Computing in Applied Probability, Volume 26 (2024) no. 2, p. 23 (Id/No 14) | DOI:10.1007/s11009-024-10083-0 | Zbl:7859326 - On some finite-velocity random motions driven by the geometric counting process, Journal of Statistical Physics, Volume 190 (2023) no. 3, p. 26 (Id/No 44) | DOI:10.1007/s10955-022-03045-8 | Zbl:1502.60166
- Stochastic dynamics of generalized planar random motions with orthogonal directions, Journal of Theoretical Probability, Volume 36 (2023) no. 4, pp. 2229-2261 | DOI:10.1007/s10959-022-01229-2 | Zbl:1540.60230
- Random motions in
with orthogonal directions, Stochastic Processes and their Applications, Volume 161 (2023), pp. 173-200 | DOI:10.1016/j.spa.2023.04.003 | Zbl:1532.60229 - References, Random Motions in Markov and Semi‐Markov Random Environments 1 (2021), p. 205 | DOI:10.1002/9781119808213.refs
- References, Random Motions in Markov and Semi‐Markov Random Environments 2 (2021), p. 177 | DOI:10.1002/9781119808152.refs
- On a directionally reinforced random walk, Proceedings of the American Mathematical Society, Volume 142 (2014) no. 9, pp. 3269-3283 | DOI:10.1090/s0002-9939-2014-12030-2 | Zbl:1304.60032
- On the generalized telegraph process with deterministic jumps, Methodology and Computing in Applied Probability, Volume 15 (2013) no. 1, pp. 215-235 | DOI:10.1007/s11009-011-9235-x | Zbl:1280.60049
- Generalized telegraph process with random delays, Journal of Applied Probability, Volume 49 (2012) no. 3, pp. 850-865 | DOI:10.1239/jap/1346955338 | Zbl:1269.60052
- On random flights with non-uniformly distributed directions, Journal of Statistical Physics, Volume 147 (2012) no. 2, pp. 382-411 | DOI:10.1007/s10955-012-0471-4 | Zbl:1243.82031
- Flying randomly in
with Dirichlet displacements, Stochastic Processes and their Applications, Volume 122 (2012) no. 2, pp. 676-713 | DOI:10.1016/j.spa.2011.10.009 | Zbl:1244.60090 - Poisson-Type Processes Governed by Fractional and Higher-Order Recursive Differential Equations, Electronic Journal of Probability, Volume 15 (2010) no. none | DOI:10.1214/ejp.v15-762
- A Damped Telegraph Random Process with Logistic Stationary Distribution, Journal of Applied Probability, Volume 47 (2010) no. 01, p. 84 | DOI:10.1017/s0021900200006410
- A damped telegraph random process with logistic stationary distribution, Journal of Applied Probability, Volume 47 (2010) no. 1, pp. 84-96 | DOI:10.1239/jap/1269610818 | Zbl:1197.60084
- Moving randomly amid scattered obstacles, Stochastics, Volume 82 (2010) no. 1-3, pp. 201-229 | DOI:10.1080/17442500903359163 | Zbl:1210.60111
- Random motions at finite speed in higher dimensions, Journal of Statistical Physics, Volume 131 (2008) no. 6, pp. 1039-1065 | DOI:10.1007/s10955-008-9532-0 | Zbl:1155.82017
- Random Motion with Gamma-Distributed Alternating Velocities in Biological Modeling, Computer Aided Systems Theory – EUROCAST 2007, Volume 4739 (2007), p. 163 | DOI:10.1007/978-3-540-75867-9_21
- Random flights in higher spaces, Journal of Theoretical Probability, Volume 20 (2007) no. 4, pp. 769-806 | DOI:10.1007/s10959-007-0093-y | Zbl:1138.60014
Cité par 20 documents. Sources : Crossref, zbMATH