We provide an alternative algebraic and geometric approach to the results of [I. Bailleul, Probab. Theory Related Fields 141 (2008) 283-329] describing the asymptotic behaviour of the relativistic diffusion.
Mots clés : random walks on groups, Poisson boundary, special relativity, causal boundary
@article{PS_2010__14__16_0, author = {Bailleul, Ismael and Raugi, Albert}, title = {Where does randomness lead in spacetime ?}, journal = {ESAIM: Probability and Statistics}, pages = {16--52}, publisher = {EDP-Sciences}, volume = {14}, year = {2010}, doi = {10.1051/ps:2008021}, mrnumber = {2640366}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps:2008021/} }
TY - JOUR AU - Bailleul, Ismael AU - Raugi, Albert TI - Where does randomness lead in spacetime ? JO - ESAIM: Probability and Statistics PY - 2010 SP - 16 EP - 52 VL - 14 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps:2008021/ DO - 10.1051/ps:2008021 LA - en ID - PS_2010__14__16_0 ER -
Bailleul, Ismael; Raugi, Albert. Where does randomness lead in spacetime ?. ESAIM: Probability and Statistics, Tome 14 (2010), pp. 16-52. doi : 10.1051/ps:2008021. http://archive.numdam.org/articles/10.1051/ps:2008021/
[1] Théorie du potentiel sur les graphes et les variétés. École d'été de Probabilités de Saint-Flour XVIII, 1988. Lect. Notes Math. 1427 (1990) 1-112. Springer, Berlin. | Zbl
,[2] Compound Poisson processes and Lévy processes in groups and symmetric spaces. J. Theoret. Probab. 13 (2000) 383-425. | Zbl
,[3] Lévy flows on manifolds and Lévy processes on Lie groups. J. Math. Kyoto Univ. 33 (1993) 1103-1123. | Zbl
and ,[4] Poisson boundary of a relativistic diffusion. Probab. Theory Related Fields 141 (2008) 283-329. | Zbl
,[5] Sur l'équivalent du module de continuité des processus de diffusion, in Séminaire de Probabilités, XXI. Lect. Notes Math. 1247 (1987) 404-427. Springer, Berlin. | Numdam | Zbl
and ,[6] Global Lorentzian geometry, volume 202 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York, second edition (1996). | Zbl
, and ,[7] Handbook of Brownian motion - facts and formulae. Probability and its Applications. Birkhäuser Verlag, Basel. Second edition (2002). | Zbl
and ,[8] Lois “zéro ou deux” pour les processus de Markov. Applications aux marches aléatoires. Ann. Inst. H. Poincaré Sect. B (N.S.) 12 (1976) 111-129. | Numdam | Zbl
,[9] Lorentz-invariant Markov processes in relativistic phase space. Ark. Mat. 6 (1966) 241-268. | Zbl
,[10] Asymptotics of some relativistic Markov processes. Proc. Natl. Acad. Sci. USA 70 (1973) 3551-3555. | Zbl
,[11] Géométrie et dynamique Lorentzienne conformes. École Normale Supérieure de Lyon (2002).
,[12] Ideal points in space-time. Proc. Roy. Soc. Lond. Ser. A 327 (1972) 545-567. | Zbl
, , and ,[13] Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. (N.S.) 36 (1999) 135-249. | Zbl
,[14] Une loi des grands nombres pour les groupes de Lie. In Séminaire de Probabilités, I . Exposé No. 8. Dépt. Math. Informat., Univ. Rennes, France (1976).
.[15] The projective geometry of simple cosmological models. Proc. Roy. Soc. Lond. Ser. A 397 (1985) 233-243. | Zbl
,[16] Stochastic differential equations and diffusion processes. North-Holland Mathematical Library, Vol. 24. North-Holland Publishing Co., Amsterdam, second edition (1989). | Zbl
and ,[17] Zbl
, and M.G. Šur, Limit theorems for compositions of distributions in the Lobačevskiĭ plane and space. Teor. Veroyatnost. i Primenen. 4 (1959) 432-436. |[18] Lévy processes in Lie groups, volume 162 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2004). | Zbl
,[19] Mathematical foundations of the calculus of probability. Translated by Amiel Feinstein. Holden-Day Inc., San Francisco, Californie (1965). | Zbl
,[20] Semi-Riemannian geometry. With applications to relativity, volume 103 of Pure Appl. Math. Academic Press Inc. (Harcourt Brace Jovanovich Publishers), New York (1983). | Zbl
,[21] Positive harmonic functions and diffusion, volume 45 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995). | Zbl
,[22] Étude asymptotique et convergence angulaire du mouvement brownien sur une variété à courbure négative. C. R. Acad. Sci. Paris Sér. A-B 280 Aiii (1975) A1539-A1542. | Zbl
,[23] Fonctions harmoniques sur les groupes localement compacts à base dénombrable. Bull. Soc. Math. France, Mémoire 54 (1977) 5-118. | Numdam | Zbl
,[24] Périodes des fonctions harmoniques bornées. In Seminar on Probability, Rennes, 1978 (French). Exposé No. 10. Univ. Rennes, France (1978).
,Cité par Sources :