A polynomial-time interior-point algorithm for convex quadratic semidefinite optimization
RAIRO - Operations Research - Recherche Opérationnelle, Tome 44 (2010) no. 3, pp. 251-265.

In this paper we propose a primal-dual interior-point algorithm for convex quadratic semidefinite optimization problem. The search direction of algorithm is defined in terms of a matrix function and the iteration is generated by full-Newton step. Furthermore, we derive the iteration bound for the algorithm with small-update method, namely, O(n log n ε), which is best-known bound so far.

DOI : 10.1051/ro/2010016
Classification : 90C05, 90C51
Mots-clés : convex quadratic semidefinite optimization, interior-point algorithm, small-update method, iteration bound, polynomial-time
@article{RO_2010__44_3_251_0,
     author = {Bai, Y. Q. and Wang, F. Y. and Luo, X. W.},
     title = {A polynomial-time interior-point algorithm for convex quadratic semidefinite optimization},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {251--265},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {3},
     year = {2010},
     doi = {10.1051/ro/2010016},
     mrnumber = {2762796},
     zbl = {1203.90178},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2010016/}
}
TY  - JOUR
AU  - Bai, Y. Q.
AU  - Wang, F. Y.
AU  - Luo, X. W.
TI  - A polynomial-time interior-point algorithm for convex quadratic semidefinite optimization
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2010
SP  - 251
EP  - 265
VL  - 44
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2010016/
DO  - 10.1051/ro/2010016
LA  - en
ID  - RO_2010__44_3_251_0
ER  - 
%0 Journal Article
%A Bai, Y. Q.
%A Wang, F. Y.
%A Luo, X. W.
%T A polynomial-time interior-point algorithm for convex quadratic semidefinite optimization
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2010
%P 251-265
%V 44
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2010016/
%R 10.1051/ro/2010016
%G en
%F RO_2010__44_3_251_0
Bai, Y. Q.; Wang, F. Y.; Luo, X. W. A polynomial-time interior-point algorithm for convex quadratic semidefinite optimization. RAIRO - Operations Research - Recherche Opérationnelle, Tome 44 (2010) no. 3, pp. 251-265. doi : 10.1051/ro/2010016. http://archive.numdam.org/articles/10.1051/ro/2010016/

[1] M. Achache, A new primal-dual path-following method for convex quadratic programming. Comput. Appl. Math. 25 (2006) 97-110.

[2] I. Adler and F. Alizadeh, Primal-dual interior point algorithms for convex quadratically constrained and semidefinite optimization problems. Technical Report RRR-111-95, Rutger Center for Operations Research, Brunswick, NJ (1995).

[3] A.Y. Alfakih, A. Khandani and H. Wolkowicz, Solving Euclidean distance matrix completion problems via semidefinite programming. Comp. Optim. Appl. 12 (1999) 13C30. | Zbl

[4] Y.Q. Bai and G.Q. Wang, A new primal-dual interior-point algorithm for second-order cone optimization based on kernel function. Acta Math. Sinica (English Series) 23 (2007) 2027-2042. | Zbl

[5] Y.Q. Bai, C. Roos and M. El. Ghami, A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization. SIAM J. Optim. 15 (2004) 101-128. | Zbl

[6] Z. Darvay, New interior-point algorithms in linear optimization. Adv. Model. Optim. 5 (2003) 51-92. | Zbl

[7] R.A. Horn and R.J. Charles, Topics in Matrix Analysis. Cambridge University Press, UK (1991). | Zbl

[8] R.A. Horn and C.R. Johnson, Matrix analysis. Cambridge University Press (1990). | Zbl

[9] E. De Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands (2002). | Zbl

[10] M. Kojima, M. Shida and S. Shindoh, Reduction of Monotone Linear Complemen-tarity Problems over Cones to Linear Programs over Cones. Acta Mathematica Vietnamica 22 (1997) 147-157. | Zbl

[11] M. Kojima, S. Shindoh and S. Hara, Interior-point methods for the monotone linear complementarity problem in symmetric matrices. SIAM J. Optim. 7 (1997) 86-125. | Zbl

[12] Y.E. Nesterov and M.J. Todd, Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim. 8 (1998) 324-364. | Zbl

[13] J.W. Nie and Y.X. Yuan, A Potential Reduction Algorithm for an Extended SDP. Science In China (Series A) 43 (2000) 35-46. | Zbl

[14] J.W. Nie and Y.X. Yuan, A Predictor-Corrector Algorithm for QSDP Combining and Newton Centering Steps. Ann. Oper. Res. 103 (2001) 115-133. | Zbl

[15] K.C. Toh, Inexact Primal-Dual Path-Following Algorithms for a Convex Quadratic SDP. Math. Program. 112 (2008) 221-254. | Zbl

[16] K.C. Toh, R.H. Tütüncü and M.J. Todd, Inexact primal-dual path-following algorithms for a special class of convex quadratic SDP and related problems. Pac. J. Optim. 3 (2007) 135-164. | Zbl

[17] J. Peng, C. Roos and T. Terlaky, Self-regular functions and new search directions for linear and semidefinite optimization. Math. Program. 93 (2002) 129-171. | Zbl

[18] G.Q. Wang and Y.Q. Bai, A new primal-dual path-following interior-point algorithm for semidefinite optimization. J. Math. Anal. Appl. 353 (2009) 339-349. | Zbl

[19] G.Q. Wang and Y.Q. Bai, Primal-dual interior point algorithm for convex quadratic semi-definite optimization. Nonlinear Anal. 71 (2009) 3389-3402. | Zbl

[20] G.Q. Wang, Y.Q. Bai and C. Roos, Primal-dual interior-point algorithms for semidefinite optimization based on a simple kernel function. J. Math. Model. Algorithms 4 (2005) 409-433. | Zbl

[21] H. Wolkowicz, R. Saigal and L. Vandenberghe, Handbook of Semidefinite Programming, Theory, Algorithms, and Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands (2000). | Zbl

[22] Y. Zhang, On extending some primal-dual interior-point algorithms from linear programming to semidefinite programming. SIAM J. Optim. 8 (1998) 365-386. | Zbl

Cité par Sources :