Reconfigurable Dynamic Cellular Manufacturing System: A New Bi-Objective Mathematical Model
RAIRO - Operations Research - Recherche Opérationnelle, Tome 48 (2014) no. 1, pp. 75-102.

Dynamic Cell Formation Problem (DCFP) seeks to cope with variation in part mix and demands using machine relocation, replication, and removing; whilst from practical point of view it is too hard to move machines between cells or invest on machine replication. To cope with this deficiency, this paper addresses Reconfigurable Dynamic Cell Formation Problem (RDCFP) in which machine modification is conducted instead of their relocation or replication in order to enhance machine capabilities to process wider range of production tasks. In this regard, a mixed integer nonlinear mathematical model is proposed, which is NP-hard. To cope with the proposed model's intractability, an Imperialist Competitive Algorithm (ICA) is developed, whose obtained results are compared with those of Genetic Algorithm's (GA's), showing superiority and outperformance of the developed ICA.

DOI : 10.1051/ro/2013054
Classification : 90B99
Mots-clés : dynamic cell formation problem, genetic algorithm, imperialist competitive algorithm, machine modification, reconfigurable cellular manufacturing system
@article{RO_2014__48_1_75_0,
     author = {Rabbani, Masoud and Samavati, Mehran and Ziaee, Mohammad Sadegh and Rafiei, Hamed},
     title = {Reconfigurable {Dynamic} {Cellular} {Manufacturing} {System:} {A} {New} {Bi-Objective} {Mathematical} {Model}},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {75--102},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {1},
     year = {2014},
     doi = {10.1051/ro/2013054},
     mrnumber = {3177878},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2013054/}
}
TY  - JOUR
AU  - Rabbani, Masoud
AU  - Samavati, Mehran
AU  - Ziaee, Mohammad Sadegh
AU  - Rafiei, Hamed
TI  - Reconfigurable Dynamic Cellular Manufacturing System: A New Bi-Objective Mathematical Model
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2014
SP  - 75
EP  - 102
VL  - 48
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2013054/
DO  - 10.1051/ro/2013054
LA  - en
ID  - RO_2014__48_1_75_0
ER  - 
%0 Journal Article
%A Rabbani, Masoud
%A Samavati, Mehran
%A Ziaee, Mohammad Sadegh
%A Rafiei, Hamed
%T Reconfigurable Dynamic Cellular Manufacturing System: A New Bi-Objective Mathematical Model
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2014
%P 75-102
%V 48
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2013054/
%R 10.1051/ro/2013054
%G en
%F RO_2014__48_1_75_0
Rabbani, Masoud; Samavati, Mehran; Ziaee, Mohammad Sadegh; Rafiei, Hamed. Reconfigurable Dynamic Cellular Manufacturing System: A New Bi-Objective Mathematical Model. RAIRO - Operations Research - Recherche Opérationnelle, Tome 48 (2014) no. 1, pp. 75-102. doi : 10.1051/ro/2013054. http://archive.numdam.org/articles/10.1051/ro/2013054/

[1] J.A. Tompkins, J.A. White, Y.A. Bozer and J.M.A. Tanchoco, Facilities Planning. Wiley, USA (2003).

[2] J. Balakrishnan and C.H. Cheng, Multi-period planning and uncertainty issues in cellular manufacturing: A review and future research directions. Eur. J. Oper. Res. 177 (2007) 281-309. | Zbl

[3] M. Rheault, J.R. Drolet and G. Abdulnour, Physically reconfigurable virtual cells: A dynamic model for a highly dynamic environment. Comput. Ind. Eng. 29 (1995) 221-225.

[4] L.K. Saxena and P.K. Jain, Dynamic cellular manufacturing systems design-a comprehensive model. Int. J. Adv. Manuf. Technol. 53 (2011) 11-34.

[5] L.R. Foulds, A.P. French and J.M. Wilson, The sustainable cell formation problem: manufacturing cell creation with machine modification costs. Comput. Oper. Res. 33 (2006) 1010-1032. | Zbl

[6] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, G. Ulsoy and H. Van Brussel, Reconfigurable Manufacturing Systems. Ann. CIRP 48 (1999) 1-14.

[7] M.G. Mehrabi, A.G. Ulsoy and Y. Koren, Reconfigurable manufacturing systems: key to future manufacturing. J. Intelligent Manuf. 11 (2000) 403-419.

[8] C.L. Grahl, Increasing efficiencies with synthetic dies. Ceramic Ind. 151 (2001) 31-32.

[9] G.F.K. Purcheck, A mathematical classification as a basis for the design of group technology production cells. Prod. Eng. 54 (1974) 35-48.

[10] A. Kusiak, The generalized group technology concept. Int. J. Prod. Res. 25 (1987) 561-569.

[11] A. Shtub, Modeling group technology cell formation as a generalized assignment problem. Int. J. Prod. Res. 27 (1989) 775-782.

[12] J.C. Wei and N. Gaither, A capacity constrained multi objective cell formation method. J. Manuf. Syst. 9 (1990) 222-232.

[13] S. Song and K. Hitomi, Integrating the production planning and cellular layout for flexible cell formation. Prod. Plan. Control. 7 (1996) 585-593.

[14] N. Safaei, M. Saidi-Mehrabad and M.S. Jabal-Ameli, A hybrid simulated annealing for solving an extended model of dynamic cellular manufacturing system. Eur. J. Oper. Res. 185 (2008) 563-592. | Zbl

[15] M.M. Ghotboddini, M. Rabbani and H. Rahimian, A comprehensive dynamic cell formation design: Benders' decomposition approach. Exp. Syst. Appl. 38 (2011) 2478-2488.

[16] A. Kusiak, The generalized group technology concept. Int. J. Prod. Res. 25 (1987) 561-569.

[17] A. Shtub, Modeling group technology cell formation as a generalized assignment problem. Int. J. Prod. Res. 27 (1989) 775-782.

[18] I. Mahdavia, A. Aalaei, M.M. Paydar and M. Solimanpur, Designing a mathematical model for dynamic cellular manufacturing systems considering production planning and worker assignment. Comput. Math. Appl. 60 (2010) 1014-1025. | MR | Zbl

[19] S.I. Satoglu and N.C. Suresh, A goal-programming approach for design of hybrid. Comput. Ind. Eng. 56 (2009) 560-575.

[20] A. Mungwattana, Design of cellular manufacturing systems for dynamic and uncertain production requirement with presence of routing flexibility. Ph.D. dissertation, Blacksburg State, University of Virginia (2000).

[21] R. Tavakkoli-Moghaddam, M.B. Aryanezhad, N. Safaei and A. Azaron, Solving a dynamic cell formation problem using metaheuristics. Appl. Math. Comput. 170 (2005) 761-780. | MR | Zbl

[22] M. Saidi-Mehrabad and N. Safaei, A new model of dynamic cell formation by a neural approach. Int. J. Adv. Manuf. Technol. 33 (2007) 1001-1009.

[23] R. Tavakkoli-Moghaddam, N. Safaei and A. Sassani, A new solution for a dynamic cell formation problem with alternative routing and machine costs using simulated annealing. J. Oper. Res. Soc. 59 (2008) 443-454. | Zbl

[24] F. Defersha and M. Chen, A comprehensive mathematical model for the design of cellular manufacturing systems. Int. J. Prod. Econ. 103 (2006) 767-783.

[25] S. Ahkioon, A.A. Bulgak and T. Bektas, Cellular manufacturing systems design with routing flexibility, machine procurement, production planning and dynamic system reconfiguration. Int. J. Prod. Res. 47 (2009) 1573-1600. | Zbl

[26] M.B. Aryanezhad, V. Deljoo and S.M.J. Mirzapour Al-e-hashem, Dynamic cell formation and the worker assignment problem: a new model. Int. J. Adv. Manuf. Technol. 41 (2009) 329-342.

[27] Sm J. Arkat and B. Abbasi, Applying simulated annealing to cellular manufacturing system design. Int. J. Adv. Manuf. Technol. 32 (2007) 531-536.

[28] N. Aljaber, W. Baek and C.L. Chen, A tabu search approach to the cell formation problem. Comput. Int. Eng. 32 (1997) 169-185.

[29] K. Spiliopoulos and S. Sofianopoulou, Designing manufacturing cells: a staged approach and a tabu search algorithm. Int. J. Prod. Res. 41 (2003) 2531-2546. | Zbl

[30] R. Logendran and Y. Karim, Design of manufacturing cells in the presence of alternative cell locations and material transporters. J. Oper. Res. Soc. 54 (2003) 1059-1075. | Zbl

[31] T.H. Wu, C. Low and W.T. Wu, A tabu search approach to the cell formation problem. Int. J. Adv. Manuf. Technol. 23 (2004) 916-924.

[32] D. Lei and Z. Wu, Tabu search for multiple-criteria manufacturing cell design. Int. J. Adv. Manuf. Technol. 28 (2006) 950-956.

[33] M.S. Yang and J.H. Yang, Machine-part cell formation in group technology using a modified ART1 method. Eur. J. Oper. Res. 188 (2008) 140-152. | Zbl

[34] P. Venkumar and A.N. Haq, Manufacturing cell formation using modified ART1 networks. Int. J. Adv. Manuf. Technol. 26 (2005) 909-916.

[35] M. Solimanpur, P. Vrat and R. Shankar, A multi-objective genetic algorithm approach to the design of cellular manufacturing systems. Int. J. Prod. Res. 42 (2004) 1419-1441. | Zbl

[36] V. Venugopal and T.T. Narendran, A genetic algorithm approach to the machine component grouping problem with multiple objectives. Comput. Ind. Eng. 22 (1992) 469-480.

[37] H. Pierreval, C. Caux, J.L. Pairs and F. Viguier, Evolutionary approaches to the design and organization of manufacturing systems. Comput. Ind. Eng. 44 (2003) 339-364.

[38] F.M. Defersha and M. Chen, Machine cell formation using a mathematical model and a genetic-algorithm-based heuristic. Int. J. Prod. Res. 44 (2006) 2421-2444. | Zbl

[39] X. Wu, C. Chao-Hsien, Y. Wang, W. Yan, A genetic algorithm for cellular manufacturing design and layout. Eur. J. Oper. Res. 181 (2007) 156-167. | Zbl

[40] K. Yasuda, L. Hu, Y. Yinza, Grouping genetic algorithm for the multi-objective cell formation problem. Int. J. Prod. Res. 43 (2005) 829-853.

[41] E. Atashpaz-Gargari and C. Lucas, Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In IEEE Cong. Evolut. Comput. Singapore (2007) 4661-4667.

[42] F. Sarayloo and R. Tavakkoli-Moghaddam, Imperialistic Competitive Algorithm for Solving a Dynamic Cell Formation Problem with Production Planning. Adv. Intell. Comput. Theor. Appl. 6215 (2010) 266-276.

[43] G.C. Onwubolu and M. Mutingi, a genetic algorithm approach to cellular manufacturing systems. Comput. Ind. Eng. 39 (2001) 125-144.

[44] E.G. Talbi, Metaheuristic from design to implementation. John Wiley & Sons Publisher: USA (2009). | Zbl

Cité par Sources :