Petri nets formalism facilitates analysis of complex biomolecular structural data
RAIRO - Operations Research - Recherche Opérationnelle, Volume 50 (2016) no. 2, pp. 401-411.

Molecular dynamics (MD) simulation is a popular method of protein and nucleic acids research. Current MD output trajectories are huge files and therefore they are hard to analyze. Petri nets (PNs) is a mathematical modeling language that allows for concise, graphical representation of complex data. We have developed a few algorithms for PNs generation from such large MD trajectories. One of them, called the One Place One Conformation (OPOC) algorithm, is presented in a greater detail. In the OPOC algorithm one biomolecular conformation corresponds to one PN place and a transition occurring in PN graph is related to a change between biomolecules conformations. As case studies three simulations are analyzed: an enforced steered MD (SMD) dissociation of a transthyretin protein tetramer into dimers, the SMD dissociation of an antibody-antigen complex and a classical MD simulation of transthyretin. We show that PNs reproduce events hidden in MD trajectories and enable observations of the conformational space features hard-to-see by the other clustering methods. Thus, a fundamental process of biomolecular data classification may be optimized using the PN approach.

DOI: 10.1051/ro/2015043
Classification: 90B10, 68W99, 92-08
Keywords: Data mining, Petri net, molecular dynamic simulations, clustering, conformational space, graphs
Gogolinska, Anna 1, 2; Jakubowski, Rafal 1; Nowak, Wieslaw 1

1 Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
2 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University ul. Chopina 12/18, 87-100 Torun, Poland.
     author = {Gogolinska, Anna and Jakubowski, Rafal and Nowak, Wieslaw},
     title = {Petri nets formalism facilitates analysis of complex biomolecular structural data},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {401--411},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {2},
     year = {2016},
     doi = {10.1051/ro/2015043},
     zbl = {1338.90078},
     mrnumber = {3479879},
     language = {en},
     url = {}
AU  - Gogolinska, Anna
AU  - Jakubowski, Rafal
AU  - Nowak, Wieslaw
TI  - Petri nets formalism facilitates analysis of complex biomolecular structural data
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2016
SP  - 401
EP  - 411
VL  - 50
IS  - 2
PB  - EDP-Sciences
UR  -
DO  - 10.1051/ro/2015043
LA  - en
ID  - RO_2016__50_2_401_0
ER  - 
%0 Journal Article
%A Gogolinska, Anna
%A Jakubowski, Rafal
%A Nowak, Wieslaw
%T Petri nets formalism facilitates analysis of complex biomolecular structural data
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2016
%P 401-411
%V 50
%N 2
%I EDP-Sciences
%R 10.1051/ro/2015043
%G en
%F RO_2016__50_2_401_0
Gogolinska, Anna; Jakubowski, Rafal; Nowak, Wieslaw. Petri nets formalism facilitates analysis of complex biomolecular structural data. RAIRO - Operations Research - Recherche Opérationnelle, Volume 50 (2016) no. 2, pp. 401-411. doi : 10.1051/ro/2015043.

A. Amadei, A.B. Linssen and H.J. Berendsen, Essential dynamics of proteins. Proteins: Structure Function and Bioinform. 17 (1993) 412–25. | DOI

B.R. Brooks et al. Charmm: the biomolecular simulation program. J. Comput. Chem. 30 (2009) 1545–1614. | DOI

D.A. Case, Th. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev, C. Simmerling, B. Wang and R.J. Woods, The amber biomolecular simulation programs. J. Comput. Chem. 26 (2005) 1668–1688. | DOI

J. Chen, Sh. Zhang, X. Liu and Q. Zhang, Insights into drug resistance of mutations d30n and i50v to hiv-1 protease inhibitor tmc-114: Free energy calculation and molecular dynamic simulation. J. Mol. Mod. 16 (2010) 459–468. | DOI

A.A. Chen and A.E. García, High-resolution reversible folding of hyperstable RNA tetraloops using molecular dynamics simulations. Proc. Natl. Acad. Sci. 110 (2013) 16820–16825. | DOI

F.E. Cohen and M.J.E. Sternberg, On the prediction of protein structure: the significance of the root-mean-square deviation. J. Mol. Biol. 138 (1980) 321–333. | DOI

R.O. Dror, R.M. Dirks, J.P. Grossman, H. Xu and D.E. Shaw, Biomolecular simulation: a computational microscope for molecular biology. Ann. Rev. Biophys. 41 (2012) 429–452. | DOI

H. Grubmüller, B. Heymann and P. Tavan, Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science 271 (1996) 997–999. | DOI

L. Holm and Ch. Sander, Mapping the protein universe. Science 273 (1996) 595–602. | DOI

R.C.G. Holland et al. Biojava: an open-source framework for bioinformatics. Bioinform. 24 (2008) 2096–2097. | DOI

W. Humphrey, A. Dalke and K. Schulten, Vmd: visual molecular dynamics. J. Mol. Graph. 14 (1996) 33–38. | DOI

R. Jakubowski, A. Gogolinska, L. Peplowski, P. Skrzyniarz and W. Nowak, Computational studies of ttr related amyloidosis: exploration of conformational space through petri net-based algorithm. TASK Quarterly 18 (2014) 289–300.

I. Jolliffe, Principal Component Analysis. Wiley Online Library (2002). | MR | Zbl

E. Lindahl, B. Hess and D.V. Der Spoel, Gromacs 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Mod. 7 (2001) 306–317. | DOI

K. Lindorff-Larsen, N. Trbovic, P. Maragakis, S. Piana and D.E. Shaw, Structure and dynamics of an unfolded protein examined by molecular dynamics simulation. J. Amer. Chem. Soc. 134 (2012) 3787–3791. | DOI

T. Murata, Petri nets: Properties, analysis and applications. Proc. of IEEE 77 (1989) 541–580. | DOI

W. Nowak, Applications of Computational Methods to Simulations of Proteins Dynamics. In Handbook Comput. Chem. Springer (2012) 1127–1153.

J.L. Peterson, Petri nets. ACM Comput. Surveys (CSUR) 9 (1977) 223–252. | DOI | MR | Zbl

J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, Ch. Chipot, R.D. Skeel, L. Kale and K. Schulten, Scalable molecular dynamics with namd. J. Comput. Chem. 26 (2005) 1781–1802. | DOI

C. Reid et al. Structure activity relationships of monocyte chemoattractant proteins in complex with a blocking antibody. Protein Engineering Design and Selection 19 (2006) 317–324. | DOI

W. Reisig, Petri nets: an introduction, vol. 4. Springer Science & Business Media (2012). | MR | Zbl

Ch. Rohr, W. Marwan and M. Heiner, Snoopy-a unifying Petri net framework to investigate biomolecular networks. Bioinform. 26 (2010) 974–975. | DOI

A. Godzik, The structural alignment between two proteins: Is there a unique answer? Protein Sci. 5 (1996) 1325–1338. | DOI

A. Gogolinska and W. Nowak, Petri nets approach to modeling of immune system and autism. In Artificial Immune Systems. Springer (2012) 86–99.

A. Gogolinska and W. Nowak, Molecular basis of lateral force spectroscopy nano-diagnostics: computational unbinding of autism related chemokine MCP-1 from IgG antibody. J. Mol. Mod. 19 (2013) 4773–4780. | DOI

J. Shao, S.W. Tanner, N. Thompson and Th.E. Cheatham, Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. J. Chem. Theory Comput. 3 (2007) 2312–2334. | DOI

I.N. Shindyalov and Ph.E. Bourne, Protein structure alignment by incremental combinatorial extension (ce) of the optimal path. Protein Engineering 11 (1998) 739–747. | DOI

A. Wojtczak, P. Neumann and V. Cody, Structure of a new polymorphic monoclinic form of human transthyretin at 3 å resolution reveals a mixed complex between unliganded and t4-bound tetramers of TTR. Acta Crystallographica Section D: Biological Crystallography 57 (2001) 957–967. | DOI

Y. Ye and A. Godzik, Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinform. 19 (2003) ii246–ii255. | DOI

Cited by Sources: