We propose to use the proximal point algorithm to regularize a “dual” problem of generalized fractional programs (GFP). The proposed technique leads to a new dual algorithm that generates a sequence which converges from below to the minimal value of the considered problem. At each step, the proposed algorithm solves approximately an auxiliary problem with a unique dual solution whose every cluster point gives a solution to the dual problem. In the exact minimization case, the sequence of dual solutions converges to an optimal dual solution. For a class of functions, including the linear case, the convergence of the dual values is at least linear.
Accepté le :
DOI : 10.1051/ro/2017004
Mots-clés : Multi-ratio fractional programs, Dinkelbach-type algorithms, Lagrange duality, proximal point algorithm
@article{RO_2017__51_4_985_0, author = {El Haffari, Mostafa and Roubi, Ahmed}, title = {Convergence of a proximal algorithm for solving the dual of a generalized fractional program}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {985--1004}, publisher = {EDP-Sciences}, volume = {51}, number = {4}, year = {2017}, doi = {10.1051/ro/2017004}, mrnumber = {3783931}, zbl = {1393.90113}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ro/2017004/} }
TY - JOUR AU - El Haffari, Mostafa AU - Roubi, Ahmed TI - Convergence of a proximal algorithm for solving the dual of a generalized fractional program JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2017 SP - 985 EP - 1004 VL - 51 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ro/2017004/ DO - 10.1051/ro/2017004 LA - en ID - RO_2017__51_4_985_0 ER -
%0 Journal Article %A El Haffari, Mostafa %A Roubi, Ahmed %T Convergence of a proximal algorithm for solving the dual of a generalized fractional program %J RAIRO - Operations Research - Recherche Opérationnelle %D 2017 %P 985-1004 %V 51 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ro/2017004/ %R 10.1051/ro/2017004 %G en %F RO_2017__51_4_985_0
El Haffari, Mostafa; Roubi, Ahmed. Convergence of a proximal algorithm for solving the dual of a generalized fractional program. RAIRO - Operations Research - Recherche Opérationnelle, Tome 51 (2017) no. 4, pp. 985-1004. doi : 10.1051/ro/2017004. http://archive.numdam.org/articles/10.1051/ro/2017004/
Proximal-Type Methods with Generalized Bregman Functions and Applications to Generalized Fractional Programming. Optimization 59 (2010) 1085–1105. | DOI | MR | Zbl
and ,A New Algorithm for Generalized Fractional Programs. Math. Program. 72 (1996) 147–175. | DOI | MR | Zbl
, , and ,Using Duality to Solve Generalized Fractional Programming Problems. J. Glob. Optim. 8 (1996) 139–170. | DOI | MR | Zbl
, , and ,Convergence of Interval-Type Algorithms for Generalized Fractional Programming. Math. Program. 43 (1989) 349–363. | DOI | MR | Zbl
and ,Weak Sharp Minima in Mathematical Programming. SIAM J. Control Optim. 31 (1993) 1340–1359. | DOI | MR | Zbl
, and ,Convergence of Some Algorithms for Convex Minimization. Math. Program. 62 (1993) 261–275. | DOI | MR | Zbl
and ,Algorithms for Generalized Fractional Programming. Math. Program. 52 (1991) 191–207. | DOI | MR | Zbl
and ,Duality in Generalized Linear Fractional Programming. Math. Program. 27 (1983) 342–354. | DOI | MR | Zbl
, and ,An Algorithm for Generalized Fractional Programs. J. Optim. Theory Appl. 47 (1985) 35–49. | DOI | MR | Zbl
, and ,A Note on an Algorithm for Generalized Fractional Programs. J. Optim. Theory Appl. 50 (1986) 183–187. | DOI | MR | Zbl
, and ,On Nonlinear Fractional Programming. Manag. Sci. 13 (1967) 492–498. | DOI | MR | Zbl
,I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnels. Gauthier-Villars, Paris, Bruxelles, Montréal (1974). | MR | Zbl
Prox-Regularization Methods for Generalized Fractional Programming. J. Optim. Theory Appl. 99 (1998) 691–722. | DOI | MR | Zbl
,On the Convergence of the Proximal Point Algorithm for Convex Minimization. SIAM J. Control Optim. 29 (1991) 403–419. | DOI | MR | Zbl
,J-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms II. Springer-Verlag (1993). | MR | Zbl
Augmented Lagrange Primal-Dual Approach for Generalized Fractional Programming Problems. Ind. Manag. Optim. 4 (2013) 723–741. | DOI | MR | Zbl
, and ,R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, N.J. (1971). | MR | Zbl
Method of Centers for Generalized Fractional Programming. J. Optim. Theory Appl. 107 (2000) 123–143. | DOI | MR | Zbl
,Convergence of Prox-Regularization Methods for Generalized Fractional Programming. RAIRO: OR 36 (2002) 73–94. | DOI | Numdam | MR | Zbl
,On General Minimax Theorems. Pacific J. Math. 8 (1958) 171–176. | DOI | MR | Zbl
,An Inexact Proximal Point Method for Solving Generalized Fractional Programs. J. Glob. Optim. 42 (2008) 121–138. | DOI | MR | Zbl
, , and ,Cité par Sources :