A new axiomatization of a class of equal surplus division values for TU games
RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 3, pp. 935-942.

In this paper, we propose a variation of weak covariance named as non-singleton covariance, requiring that changing the worth of a non-singleton coalition in a TU game affects the payoffs of all players equally. We establish that this covariance is characteristic for the convex combinations of the equal division value and the equal surplus division value, together with efficiency and a one-parameterized axiom treating a particular kind of players specially. As special cases, parallel axiomatizations of the two values are also provided.

DOI : 10.1051/ro/2017024
Classification : 91A12
Mots-clés : TU game, equal division value, equal surplus division value, nullifying player, dummifying player
Hu, Xun-Feng 1 ; Li, Deng-Feng 1

1
@article{RO_2018__52_3_935_0,
     author = {Hu, Xun-Feng and Li, Deng-Feng},
     title = {A new axiomatization of a class of equal surplus division values for {TU} games},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {935--942},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {3},
     year = {2018},
     doi = {10.1051/ro/2017024},
     zbl = {1419.91044},
     mrnumber = {3885517},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2017024/}
}
TY  - JOUR
AU  - Hu, Xun-Feng
AU  - Li, Deng-Feng
TI  - A new axiomatization of a class of equal surplus division values for TU games
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2018
SP  - 935
EP  - 942
VL  - 52
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2017024/
DO  - 10.1051/ro/2017024
LA  - en
ID  - RO_2018__52_3_935_0
ER  - 
%0 Journal Article
%A Hu, Xun-Feng
%A Li, Deng-Feng
%T A new axiomatization of a class of equal surplus division values for TU games
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2018
%P 935-942
%V 52
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2017024/
%R 10.1051/ro/2017024
%G en
%F RO_2018__52_3_935_0
Hu, Xun-Feng; Li, Deng-Feng. A new axiomatization of a class of equal surplus division values for TU games. RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 3, pp. 935-942. doi : 10.1051/ro/2017024. http://archive.numdam.org/articles/10.1051/ro/2017024/

[1] S. Béal, E. Rémila and P. Solal, Preserving or removing special players: What keeps your payoff unchanged in TU-games? Math. Soc. Sci. 73 (2015) 23–31 | DOI | MR | Zbl

[2] S. Béal, E. Rémila and P. Solal, Axioms of invariance for TU-games. Int. J. Game Theory 44 (2015) 891–902 | DOI | MR | Zbl

[3] S. Béal, A. Casajus, F. Huettner, E. Rémila and P. Solal, Characterizations of weighted and equal division values. Theory Decis. 80 (2016) 649–667 | DOI | MR | Zbl

[4] A. Casajus and F. Huettner, Null, nullifying, or dummifying players: The difference between the Shapley value, the equal division value, and the equal surplus division value. Econ. Lett. 122 (2014) 167–169 | DOI | MR | Zbl

[5] Y. Chun and B. Park, Population solidarity, population fair-ranking, and the egalitarian value. Int. J. Game Theory 41 (2012) 255–270 | DOI | MR | Zbl

[6] T.S.H. Driessen and Y. Funaki, Coincidence of and collinearity between game theoretic solutions. Oper. Res. Spektrum 13 (1991) 15–30 | DOI | MR | Zbl

[7] R. Joosten, Dynamics, equiibria and values. Ph.D. thesis, Maastricht University, The Netherlands (1996)

[8] Y. Ju, P. Borm and P. Ruys, The consensus value: A new solution concept for cooperative games. Soc. Choice Welfare 28 (2007) 685–703 | DOI | MR | Zbl

[9] L.S. Shapley, A value for n-person games. In Contributions to the Theory of Games, edited by  H.W. Kuhn and A.W. Tucker, Vol. II. Princeton  University Press Princeton  (1953)  307–317 | MR | Zbl

[10] R.  Van Den Brink, Null or nullifying players: The difference between the Shapley value and equal division solutions. J. Econ. Theory 136 (2007) 767–775 | DOI | MR | Zbl

[11] R. Van Den Brink and Y. Ju, Reconciling marginalism with egalitarianism: Consistency, monotonicity, and implementation of egalitarian Shapley values. Soc. Choice Welfare 40 (2013) 693–714 | DOI | MR | Zbl

[12] R. Van Den Brink and Y. Funaki, Axiomatizations of a class of equal surplus sharing solutions for TU-games. Theory Decis. 67 (2009) 303–340 | DOI | MR | Zbl

[13] R. Van Den Brink, Y. Chun, Y. Funaki and B. Park, Consistency, population solidarity, and egalitarian solutions for TU-games. Theory Decis. 81 (2016) 427–447 | DOI | MR | Zbl

[14] G.J. Xu, H. Dai and H.B. Shi, Axiomatizations and a noncooperative interpretation of the α-CIS value. Asia-Pacific J. Oper. Res. 32 (2015) 1550031(1–15). | MR

[15] K. Yokote, Y. Funaki and Y. Kamijo, A new basis and the Shapley value. Math. Soc. Sci. 80 (2016) 21–24 | DOI | MR | Zbl

[16] H.P. Young, Monotonic solutions of cooperative games. Int. J. Game Theory 14 (1985) 65–72 | DOI | MR | Zbl

Cité par Sources :