The main aim of this paper is to study strong Karush–Kuhn–Tucker (KKT) optimality conditions for nonsmooth multiobjective semi-infinite programming (MSIP) problems. By using tangential subdifferential and suitable regularity conditions, we establish some strong necessary optimality conditions for some types of efficient solutions of nonsmooth MSIP problems. In addition to the theoretical results, some examples are provided to illustrate the advantages of our outcomes.
Accepté le :
DOI : 10.1051/ro/2018020
Mots-clés : Multiobjective semi-infinite programming, efficient solution, weakly efficient solution, strong Karush–Kuhn–Tucker optimality conditions, tangential subdifferential
@article{RO_2018__52_4-5_1019_0, author = {Tung, Le Thanh}, title = {Strong {Karush{\textendash}Kuhn{\textendash}Tucker} optimality conditions for multiobjective semi-infinite programming via tangential subdifferential}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {1019--1041}, publisher = {EDP-Sciences}, volume = {52}, number = {4-5}, year = {2018}, doi = {10.1051/ro/2018020}, mrnumber = {3878617}, zbl = {1411.90334}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ro/2018020/} }
TY - JOUR AU - Tung, Le Thanh TI - Strong Karush–Kuhn–Tucker optimality conditions for multiobjective semi-infinite programming via tangential subdifferential JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2018 SP - 1019 EP - 1041 VL - 52 IS - 4-5 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ro/2018020/ DO - 10.1051/ro/2018020 LA - en ID - RO_2018__52_4-5_1019_0 ER -
%0 Journal Article %A Tung, Le Thanh %T Strong Karush–Kuhn–Tucker optimality conditions for multiobjective semi-infinite programming via tangential subdifferential %J RAIRO - Operations Research - Recherche Opérationnelle %D 2018 %P 1019-1041 %V 52 %N 4-5 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ro/2018020/ %R 10.1051/ro/2018020 %G en %F RO_2018__52_4-5_1019_0
Tung, Le Thanh. Strong Karush–Kuhn–Tucker optimality conditions for multiobjective semi-infinite programming via tangential subdifferential. RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 4-5, pp. 1019-1041. doi : 10.1051/ro/2018020. http://archive.numdam.org/articles/10.1051/ro/2018020/
[1] Set-Valued Analysis. Birkhäuser, Boston (1990). | MR | Zbl
and ,[2] Necessary conditions for nonsmooth multiobjective semi-infinite problems using Michel-Penot subdifferential. Decisions Econ. Finan. 40 (2017) 103–113. | DOI | MR | Zbl
and ,[3] Regularity conditions and optimality in vector optimization. Numer. Funct. Anal. Optim. 25 (2004) 479–501. | DOI | MR | Zbl
, and ,[4] Nonsmooth semi-infinite multiobjective optimization problems. J. Optim. Theory Appl. 160 (2014) 748–762. | DOI | MR | Zbl
and ,[5] Isolated and proper efficiencies in semi-infinite vector optimization problems. J. Optim. Theory Appl. 162 (2014) 447–462. | DOI | MR | Zbl
and ,[6] Optimization and Nonsmooth Analysis. Wiley Interscience, New York (1983). | MR | Zbl
,[7] Constructive Nonsmooth Analysis. Peter Lang, Frankfurt (1995). | MR | Zbl
and ,[8] Optimality conditions in convex optimization revisited. Optim. Lett. 7 (2013) 221–229. | DOI | MR | Zbl
and ,[9] Multicriteria Optimization. Springer, Berlin (2005). | MR | Zbl
,[10] Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22 (1968) 618–630. | DOI | MR | Zbl
,[11] Robust aspects of solutions in deterministic multiple objective linear programming. Eur. J. Oper. Res. 229 (2013) 29–36. | DOI | MR | Zbl
, and ,[12] Dini derivatives in optimization - Part I. Riv. Mat. Sci. Econ. Soc. 15 (1993) 3–30. | MR | Zbl
and ,[13] Again on regularity conditions in differentiable vector optimization. Ann. Univ. Buchar. Math. Ser. 2 (2011) 157–177. | MR | Zbl
and ,[14] On constraint qualification in directionally differentiable multiobjective optimization problems. RAIRO: OR 38 (2004) 255–274. | DOI | Numdam | MR | Zbl
, and ,[15] Strong Kuhn-Tucker conditions and constraint qualifications in locally Lipschitz multiobjective optimization problems. TOP 17 (2009) 288–304. | DOI | MR | Zbl
, and ,[16] Linear Semi-Infinite Optimization. Wiley, Chichester (1998). | MR | Zbl
and ,[17] Optimality conditions in convex multiobjective SIP. Math. Program. 164 (2017) 167–191. | DOI | MR | Zbl
and ,[18] Constraint qualifications in convex vector semi-infinite optimization. Eur. J. Oper. Res. 249 (2016) 32–40. | DOI | MR | Zbl
, and ,[19] Convex Analysis and Minimization Algorithms I. Springer, Berlin (1993). | MR
and ,[20] Nonsmooth calculus, minimality, and monotonicity of convexificators. J. Optim. Theory Appl. 101 (1999) 599–621. | DOI | MR | Zbl
, ,[21] Cualificaciones de restricciones en problemas de optimizacion vectorial diferenciables, in Actas XVI C.E.D.Y.A./VI C.M.A. Universidad de las Palmas de Gran Canaria (1999) Vol. 1, 727–734.
and ,[22] Alternative theorems and necessary optimality conditions for directionally differentiable multiobjective programs. J. Convex Anal. 9 (2002) 97–116. | MR | Zbl
and ,[23] Optimality conditions in directionally differentiable Pareto problems with a set constraint via tangent cones. Numer. Funct. Anal. Optim. 24 (2003) 557–574. | DOI | MR | Zbl
and ,[24] Characterization of (weakly/properly/robust) efficient solutions in nonsmooth semi-infinite multiobjective optimization using convexificators. Optimization 67 (2017) 217–235. | DOI | MR | Zbl
and ,[25] Optimality conditions in optimization problems with convex feasible set using convexificators. Math. Methods Oper. Res. 86 (2017) 103–121. | DOI | MR | Zbl
, and ,[26] On strong KKT optimality conditions for multiobjective semi-infinite programming problems with Lipschitzian data. Optim. Lett. 9 (2015) 1121–1129. | DOI | MR | Zbl
,[27] Optimality conditions for nonsmooth semi-infinite multiobjective programming. Optim. Lett. 8 (2014) 1517–1528. | DOI | MR | Zbl
and ,[28] Optimality conditions and duality for nonsmooth semi-infinite programming via convexificators, in New trends in Optimization and Variational Analysis for Applications - International Conference. Quy Nhon, Binh Dinh, Vietnam (2016).
and ,[29] Characterizations of solutions sets of a class of nonconvex semi-infinite programming problems. J. Nonlinear Convex Anal. 12 (2011) 429–440. | MR | Zbl
and ,[30] On robust multiobjective optimization. Vietnam J. Math. 40 (2012) 305–317. | MR | Zbl
and ,[31] On representations of the feasible set in convex optimization. Optim. Lett. 5 (2011) 549–556. | DOI | Zbl
,[32] An introduction to the theory of nonsmooth optimization. Optimization 17 (1986) 827–858. | DOI | MR | Zbl
,[33] Constraint qualifications in nonsmooth multiobjective optimization. J. Optim. Theory Appl. 106 (2008) 373–398. | MR | Zbl
,[34] Constraint qualifications for semi-infinite systems of convex inequalities. SIAM J. Optim. 11 (2000) 31–52. | DOI | MR | Zbl
, and ,[35] Theory of Vector Optimization. Springer, Berlin (1989). | DOI | MR
,[36] Constraint qualifications in multiobjective optimization problems: differentiable case. J. Optim. Theory Appl. 80 (1994) 483–500. | DOI | MR | Zbl
,[37] Optimality conditions for pseudo-convex minimization over convex sets defined by tangentially convex constraints. Optim. Lett. 9 (2015) 1017–1023. | DOI | MR | Zbl
,[38] Calcus sous-differentiel pour des fonctions Lipschitziennes et non Lipschitziennes. C. R. Acad. Sci. Paris Ser. I Math. 12 (1984) 269–272. | MR | Zbl
and ,[39] Constraint qualifications and optimality conditions in semi-infinite and infinite programming. Math. Program. 139 (2013) 271–300. | DOI | MR | Zbl
and ,[40] Optimality conditions and duality for semi-infinite mathematical programming problems with equilibrium constraints, using convexificators. Ann. Oper. Res. 269 (2018) 549–564. | DOI | MR | Zbl
and ,[41] On constraint qualification in multiobjective optimization problems: semidifferentiable case. J. Optim. Theory Appl. 100 (1999) 417–433. | DOI | MR | Zbl
and ,[42] Necessary Conditions for an Extremum. Marcel Dekker Inc, New York (1971). | MR | Zbl
,[43] Nonconvex optimization and its applications, in Semi-Infinite Programming. Kluwer Academic, Boston (1998). | DOI | MR | Zbl
and ,[44] Convex Analysis. In Vol. 28 of Princeton Math. Ser. Princeton University Press, Princeton, New Jersey (1970). | MR | Zbl
,[45] A new approach to characterize the solution set of a pseudoconvex programming problem. J. Comput. Appl. Math. 261 (2014) 333–340. | DOI | MR | Zbl
and ,[46] Karush-Kuhn-Tucker optimality conditions and duality for multiobjective semi-infinite programming via tangential subdifferential. In preparation (2017). | Numdam | MR | Zbl
,[47] Constraint qualifications for KKT optimality condition in convex optimization with locally Lipschitz inequality constraints. Linear Nonlinear Anal. 2 (2016) 239–244. | MR | Zbl
and ,[48] Nondifferentiable multiplier rules for optimization and bilevel optimization problems. SIAM J. Optim. 15 (2014) 252–274. | MR | Zbl
,[49] Robustness in nonsmooth nonlinear multi-objective programming. Eur. J. Oper. Res. 247 (2015) 370–378. | DOI | MR | Zbl
, and ,[50] Strong Kuhn-Tucker optimality in nonsmooth multiobjective optimization problems. Pac. J. Optim. 11 (2015) 483–494. | MR | Zbl
,Cité par Sources :