We investigate the minima of functionals of the form
@article{RO_2002__36_1_95_0, author = {Kadhi, Fethi}, title = {Generalized characterization of the convex envelope of a function}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {95--100}, publisher = {EDP-Sciences}, volume = {36}, number = {1}, year = {2002}, doi = {10.1051/ro:2002007}, mrnumber = {1920381}, zbl = {1003.49016}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ro:2002007/} }
TY - JOUR AU - Kadhi, Fethi TI - Generalized characterization of the convex envelope of a function JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2002 SP - 95 EP - 100 VL - 36 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ro:2002007/ DO - 10.1051/ro:2002007 LA - en ID - RO_2002__36_1_95_0 ER -
%0 Journal Article %A Kadhi, Fethi %T Generalized characterization of the convex envelope of a function %J RAIRO - Operations Research - Recherche Opérationnelle %D 2002 %P 95-100 %V 36 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ro:2002007/ %R 10.1051/ro:2002007 %G en %F RO_2002__36_1_95_0
Kadhi, Fethi. Generalized characterization of the convex envelope of a function. RAIRO - Operations Research - Recherche Opérationnelle, Tome 36 (2002) no. 1, pp. 95-100. doi : 10.1051/ro:2002007. http://archive.numdam.org/articles/10.1051/ro:2002007/
[1] What Is the Subdifferential of the Closed Convex Hull of a Function? SIAM J. Math. Anal. 27 (1994) 1661-1679. | MR | Zbl
and ,[2] Analyse Fonctionnelle: Théorie et Applications. Masson, Paris, France (1983). | MR | Zbl
,[3] Introduction au Calcul des Variations. Presses Polytechniques et Universitaires Romandes, Lausanne (1992). | MR | Zbl
,[4] Characterization and Approximation of the Convex Envelope of a Function. J. Optim. Theory Appl. 110 (2001) 457-466. | MR | Zbl
and ,[5] Minimisation de Fonctionnelles dans un Ensemble de Fonctions Convexes. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 851-855. | Zbl
and ,[6] Convex Analysis. Princeton University Press, Princeton, New Jersey (1970). | MR | Zbl
,[7] Real and Complex Analysis, Third Edition. McGraw Hill, New York (1987). | MR | Zbl
,Cité par Sources :