We consider a multiobjective optimization problem with a feasible set defined by inequality and equality constraints such that all functions are, at least, Dini differentiable (in some cases, Hadamard differentiable and sometimes, quasiconvex). Several constraint qualifications are given in such a way that generalize both the qualifications introduced by Maeda and the classical ones, when the functions are differentiable. The relationships between them are analyzed. Finally, we give several Kuhn-Tucker type necessary conditions for a point to be Pareto minimum under the weaker constraint qualifications here proposed.
Mots-clés : multiobjective optimization problems, constraint qualification, necessary conditions for Pareto minimum, Lagrange multipliers, tangent cone, Dini differentiable functions, Hadamard differentiable functions, quasiconvex functions
@article{RO_2004__38_3_255_0, author = {Giorgi, Giorgio and Jim\'enez, Bienvenido and Novo, Vincente}, title = {On constraint qualifications in directionally differentiable multiobjective optimization problems}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {255--274}, publisher = {EDP-Sciences}, volume = {38}, number = {3}, year = {2004}, doi = {10.1051/ro:2004023}, mrnumber = {2091756}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ro:2004023/} }
TY - JOUR AU - Giorgi, Giorgio AU - Jiménez, Bienvenido AU - Novo, Vincente TI - On constraint qualifications in directionally differentiable multiobjective optimization problems JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2004 SP - 255 EP - 274 VL - 38 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ro:2004023/ DO - 10.1051/ro:2004023 LA - en ID - RO_2004__38_3_255_0 ER -
%0 Journal Article %A Giorgi, Giorgio %A Jiménez, Bienvenido %A Novo, Vincente %T On constraint qualifications in directionally differentiable multiobjective optimization problems %J RAIRO - Operations Research - Recherche Opérationnelle %D 2004 %P 255-274 %V 38 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ro:2004023/ %R 10.1051/ro:2004023 %G en %F RO_2004__38_3_255_0
Giorgi, Giorgio; Jiménez, Bienvenido; Novo, Vincente. On constraint qualifications in directionally differentiable multiobjective optimization problems. RAIRO - Operations Research - Recherche Opérationnelle, Tome 38 (2004) no. 3, pp. 255-274. doi : 10.1051/ro:2004023. http://archive.numdam.org/articles/10.1051/ro:2004023/
[1] Set-valued analysis. Birkhaüser, Boston (1990). | MR | Zbl
and ,[2] Foundations of optimization. Springer-Verlag, Berlin (1976). | MR | Zbl
and ,[3] Nonlinear programming. John Wiley & Sons, New York (1979). | MR | Zbl
and ,[4] Constructive nonsmooth analysis. Verlag Peter Lang, Frankfurt am Main (1995). | MR | Zbl
and ,[5] Dini derivatives in optimization. Part I. Riv. Mat. Sci. Econom. Social. Anno 15 (1992) 3-30. | Zbl
and ,[6] Optimality conditions for directionally differentiable multiobjective programming problems. J. Optim. Theory Appl. 72 (1992) 91-111. | Zbl
,[7] Cualificaciones de restricciones en problemas de optimización vectorial diferenciables. Actas XVI C.E.D.Y.A./VI C.M.A. Vol. I, Universidad de Las Palmas de Gran Canaria, Spain (1999) 727-734.
and ,[8] Alternative theorems and necessary optimality conditions for directionally differentiable multiobjective programs. J. Convex Anal. 9 (2002) 97-116. | Zbl
and ,[9] Optimality conditions in directionally differentiable Pareto problems with a set constraint via tangent cones. Numer. Funct. Anal. Optim. 24 (2003) 557-574. | Zbl
and ,[10] Constraint qualifications in multiobjective optimization problems: differentiable case. J. Optim. Theory Appl. 80 (1994) 483-500. | Zbl
,[11] Nonlinear programming. McGraw-Hill, New York (1969). | MR | Zbl
,[12] Lagrange multipliers in multiobjective optimization under mixed assumptions of Fréchet and directional differentiability, in 5th International Conference on Operations Research, University of La Habana, Cuba, March 4-8 (2002). Investigación Operacional 25 (2004) 34-47. | Zbl
and ,[13] On constraint qualification in multiobjective optimization problems: semidifferentiable case. J. Optim. Theory Appl. 100 (1999) 417-433. | Zbl
and ,[14] Convex Analysis. Princeton University Press, Princeton (1970). | MR | Zbl
,Cité par Sources :