The problem of embedding graphs into other graphs is much studied in the graph theory. In fact, much effort has been devoted to determining the conditions under which a graph G is a subgraph of a graph H, having a particular structure. An important class to study is the set of graphs which are embeddable into a hypercube. This importance results from the remarkable properties of the hypercube and its use in several domains, such as: the coding theory, transfer of information, multicriteria rule, interconnection networks ... In this paper we are interested in defining two new classes of embedding trees into the hypercube for which the dimension is given.
@article{RO_2004__38_4_295_0, author = {Nekri, Mounira and Berrachedi, Abdelhafid}, title = {Two new classes of trees embeddable into hypercubes}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {295--303}, publisher = {EDP-Sciences}, volume = {38}, number = {4}, year = {2004}, doi = {10.1051/ro:2004027}, mrnumber = {2178082}, zbl = {1114.05023}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ro:2004027/} }
TY - JOUR AU - Nekri, Mounira AU - Berrachedi, Abdelhafid TI - Two new classes of trees embeddable into hypercubes JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2004 SP - 295 EP - 303 VL - 38 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ro:2004027/ DO - 10.1051/ro:2004027 LA - en ID - RO_2004__38_4_295_0 ER -
%0 Journal Article %A Nekri, Mounira %A Berrachedi, Abdelhafid %T Two new classes of trees embeddable into hypercubes %J RAIRO - Operations Research - Recherche Opérationnelle %D 2004 %P 295-303 %V 38 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ro:2004027/ %R 10.1051/ro:2004027 %G en %F RO_2004__38_4_295_0
Nekri, Mounira; Berrachedi, Abdelhafid. Two new classes of trees embeddable into hypercubes. RAIRO - Operations Research - Recherche Opérationnelle, Tome 38 (2004) no. 4, pp. 295-303. doi : 10.1051/ro:2004027. http://archive.numdam.org/articles/10.1051/ro:2004027/
[1] Plongement de graphes dans l'Hypercube. Thèse de Doctorat d'état en informatique. Université Joseph Fourier Grenoble 1 (2001).
,[2] On two legged caterpillars which span hypercubes. Cong. Numer. (1988) 103-108. | Zbl
, and ,[3] Embedding certain trees into hypercube, in Recent Advances in graph theory. Academia, Praha (1974) 257-262. | Zbl
,[4] One legged caterpillars spans hypercubes. J. Graph Theory 10 (1986) 69-77. | Zbl
and ,[5] Embedding the dichotomie tree into the cube (Czech with english summary). Cas. Prest. Mat. 97 (1972) 201-205. | Zbl
and ,[6] B-valuations of graphs. Czech. Math. J. 22 (1972) 388-351. | Zbl
and ,[7] On hamiltonian circuits and spanning trees of hypercubes. Cas. prest. Mat. 109 (1984) 135-152. | Zbl
,[8] On cubes and dichotomic trees. Cas Prest. Mat. 99 (1974). | MR | Zbl
,[9] On quasistars in n-cubes. Cas. Prest. Mat. 109 (1984) 153-156. | Zbl
,Cité par Sources :