We describe an interior point algorithm for convex quadratic problem with a strict complementarity constraints. We show that under some assumptions the approach requires a total of number of iterations, where is the input size of the problem. The algorithm generates a sequence of problems, each of which is approximately solved by Newton’s method.
@article{RO_2005__39_1_13_0, author = {Benouahboun, Rachid and Mansouri, Abdelatif}, title = {An interior point algorithm for convex quadratic programming with strict equilibrium constraints}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {13--33}, publisher = {EDP-Sciences}, volume = {39}, number = {1}, year = {2005}, doi = {10.1051/ro:2005002}, mrnumber = {2166343}, zbl = {1102.90041}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ro:2005002/} }
TY - JOUR AU - Benouahboun, Rachid AU - Mansouri, Abdelatif TI - An interior point algorithm for convex quadratic programming with strict equilibrium constraints JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2005 SP - 13 EP - 33 VL - 39 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ro:2005002/ DO - 10.1051/ro:2005002 LA - en ID - RO_2005__39_1_13_0 ER -
%0 Journal Article %A Benouahboun, Rachid %A Mansouri, Abdelatif %T An interior point algorithm for convex quadratic programming with strict equilibrium constraints %J RAIRO - Operations Research - Recherche Opérationnelle %D 2005 %P 13-33 %V 39 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ro:2005002/ %R 10.1051/ro:2005002 %G en %F RO_2005__39_1_13_0
Benouahboun, Rachid; Mansouri, Abdelatif. An interior point algorithm for convex quadratic programming with strict equilibrium constraints. RAIRO - Operations Research - Recherche Opérationnelle, Tome 39 (2005) no. 1, pp. 13-33. doi : 10.1051/ro:2005002. http://archive.numdam.org/articles/10.1051/ro:2005002/
[1] Optimization over the efficient set. J. Math. Anal. Appl. 98 (1984) 562-580. | Zbl
,[2] An algorithm for optimizing over the weakly-efficient set. European J. Oper. Res. 25 (1986) 192-199. | Zbl
,[3] O-D demand adjustment problem with cojestion: Part I. Model analysis and optimality conditions. Publication CRT-94-56. | Zbl
and ,[4] Optimal design of beams discretized by elastic plastic finite element. Comput. Structures 20 (1985) 475-585. | Zbl
and ,[5] Nonlinear Programming: Sequential Unconstrained Minmization Techniques. John Wiley, New York (1968). | MR | Zbl
and ,[6] The theory of Linear Economic. McGraw-Hill Book Company, New York (1960). | MR
,[7] Path-following methods for linear programming. SIAM Rev. 34 (1992) 167-274. | Zbl
,[8] An primal interior point algorithm for convex quadratic programming. Math. Prog. 49 (1990/91) 325-340. | Zbl
and ,[9] On the solution of optimum design problems with variational inequalities, in Recent Advances in Nonsmooth Optimization, edited by D.Z. Du, L. Qi and R. Womersly, World Sciences (November 1995). | MR | Zbl
and ,[10] A quadratic programming approach for certain classes of nonlinear structural problems. Meccanica 3 (1968) 121-130. | Zbl
,[11] Interior path following primal-dual algorithms. Part I: Linear programming. Math. Prog. 44 (1989) 27-41. | Zbl
and ,[12] Mathematical Programs with Equilibrium Constraints. Cambridge University Press (1996). | MR | Zbl
, and ,Cité par Sources :