The paper is designated to the analysis of queueing systems, arising in the network theory and communications theory (called multiphase queueing systems, tandem queues or series of queueing systems). Also we note that multiphase queueing systems can be useful for modelling practical multi-stage service systems in a variety of disciplines, especially on manufacturing (assembly lines), computer networking (packet switch structures), and in telecommunications (e.g. cellular mobile networks), etc. This research presents heavy traffic limit theorems for the cumulative idle time in multiphase queues. In this work, functional limit theorems are proved for the values of important probability characteristics of the queueing system (a cumulative idle time of a customer).
@article{RO_2005__39_2_75_0, author = {Minkevi\v{c}ius, Saulius and Stei\v{s}\={u}nas, Stasys}, title = {About the cumulative idle time in multiphase queues}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {75--85}, publisher = {EDP-Sciences}, volume = {39}, number = {2}, year = {2005}, doi = {10.1051/ro:2005008}, mrnumber = {2181792}, zbl = {1092.90017}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ro:2005008/} }
TY - JOUR AU - Minkevičius, Saulius AU - Steišūnas, Stasys TI - About the cumulative idle time in multiphase queues JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2005 SP - 75 EP - 85 VL - 39 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ro:2005008/ DO - 10.1051/ro:2005008 LA - en ID - RO_2005__39_2_75_0 ER -
%0 Journal Article %A Minkevičius, Saulius %A Steišūnas, Stasys %T About the cumulative idle time in multiphase queues %J RAIRO - Operations Research - Recherche Opérationnelle %D 2005 %P 75-85 %V 39 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ro:2005008/ %R 10.1051/ro:2005008 %G en %F RO_2005__39_2_75_0
Minkevičius, Saulius; Steišūnas, Stasys. About the cumulative idle time in multiphase queues. RAIRO - Operations Research - Recherche Opérationnelle, Tome 39 (2005) no. 2, pp. 75-85. doi : 10.1051/ro:2005008. http://archive.numdam.org/articles/10.1051/ro:2005008/
[1] An experimentally validated model of the paging drum. Acta Inform. 11 (1979) 103-117. | Zbl
, and ,[2] Asymptotic results on infinite tandem queueing networks. Probab. Theory Related Fields 118 (2000) 365-405. | Zbl
, and ,[3] Convergence of Probability Measures. New York, Wiley (1968). | MR | Zbl
,[4] On approximate computer system models. J. ACM 22 (1975) 261-269. | Zbl
,[5] Probabilistic models of computer systems. II. Diffusion approximations, waiting times and batch arrivals. Acta Inform. 12 (1979) 285-303. | Zbl
,[6] Diffusion cell loss estimates for ATM with multiclass bursty traffic. Computer Systems - Science and Engineering. Special Issue: ATM Networks. 11 (1996) 325-333.
, and ,[7] Diffusion based Call Admission Control in ATM. Performance Evaluation 27/28 (1996) 411-436, also in Proceedings of the IFIP WG 7.3/ACM-SIGMETRICS Performance'96 Conference. | Zbl
, and ,[8] Analysis and Synthesis of Computer Systems. New York-London, Academic Press (1980). | MR | Zbl
and ,[9] Probabilistic models of computer systems. I. Exact results. Acta Inform. 7 (1976) 35-60. | Zbl
and ,[10] The behaviour of a single queue in a general queueing network. Acta Inform. 7 (1976/77) 123-136. | Zbl
and ,[11] Weak convergence in queueing theory. Adv. Appl. Probab. 5 (1973) 570-594. | Zbl
,[12] Multiple channel queues in heavy traffic. I. Adv. Appl. Probab. No. 2 (1970) 150-177. | Zbl
and ,[13] Heavy Traffic Limits for Multiphase Queues. American Mathematical Society, Providence, Rhode Island (1994). | MR | Zbl
and ,[14] Concavity and reflected Levy process. J. Appl. Probab. 29 (1992) 209-215. | Zbl
,[15] Application of the diffusion approximation to queueing networks: Parts I and II. J. ACM 21 (1974) 316-328, 459-469. | Zbl
,[16] A diffusion approximation analysis of an ATM statistical multiplexer with multiple state solutions: Part I: Equilibrium state solutions. Proc. ICC'93 (1993) 1047-1053.
and ,[17] ATM Network Performance Predictions and Control, Ph.D. Dissertation. Duke: Electrical and Computer Engineering Department of Duke University (1996).
,[18] Call admission control in ATM using diffusion model. Proc. Globecom'96, London, UK (1996).
and ,[19] A random walk approach to a shutdown queueing system. SIAM J. Appl. Math. 19 (1970) 103-115. | Zbl
and ,[20] Weak convergence in multiphase queues. Lithuanian Math. J. 26 (1986) 717-722 (in Russian).
,[21] On the full idle time in multiphase queues. Lithuanian Math. J. (to appear).
,[22] Some numerical results for the queueing system . J. R. Statist. Soc. Ser. B. 25 (1963) 477-488. | Zbl
,[23] Stochastic Storage Processes. New York-Heidelberg-Berlin, Springer-Verlag (1968). | MR | Zbl
,[24] Moderate deviations for queues in critical loading. Queue. Syst. Theor. Appl. 31 (1999) 359-392. | Zbl
,[25] Accuracy of the diffusion approximation for some queueing systems. IBM J. Res. Dev. 18 (1974) 110-124. | Zbl
, ,[26] Conditions for stationarity in a single server queueing system. Zastos. Mat. 15 (1976) 17-24. | Zbl
,[27] Occupation time problems in the theory of queues, in Lecture Notes in Economics and Mathematical Systems. Berlin-Heidelberg-New York, Springer-Verlag 98 (1974) 91-131. | Zbl
,[28] Limits for cumulative input processes to queues. Probab. Engrg. Inform. Sci. 14 (2000) 123-150. | Zbl
,Cité par Sources :