On co-bicliques
RAIRO - Operations Research - Recherche Opérationnelle, Tome 41 (2007) no. 3, pp. 295-304.

A co-biclique of a simple undirected graph G=(V,E) is the edge-set of two disjoint complete subgraphs of G. (A co-biclique is the complement of a biclique.) A subset FE is an independent of G if there is a co-biclique B such that FB, otherwise F is a dependent of G. This paper describes the minimal dependents of G. (A minimal dependent is a dependent C such that any proper subset of C is an independent.) It is showed that a minimum-cost dependent set of G can be determined in polynomial time for any nonnegative cost vector x + E . Based on this, we obtain a branch-and-cut algorithm for the maximum co-biclique problem which is, given a weight vector w + E , to find a co-biclique B of G maximizing w(B)= eB w e .

DOI : 10.1051/ro:2007020
Classification : 05C15, 90C09
Mots-clés : co-bicyclique, signed graph, branch-and-cut
@article{RO_2007__41_3_295_0,
     author = {Cornaz, Denis},
     title = {On co-bicliques},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {295--304},
     publisher = {EDP-Sciences},
     volume = {41},
     number = {3},
     year = {2007},
     doi = {10.1051/ro:2007020},
     mrnumber = {2348004},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro:2007020/}
}
TY  - JOUR
AU  - Cornaz, Denis
TI  - On co-bicliques
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2007
SP  - 295
EP  - 304
VL  - 41
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro:2007020/
DO  - 10.1051/ro:2007020
LA  - en
ID  - RO_2007__41_3_295_0
ER  - 
%0 Journal Article
%A Cornaz, Denis
%T On co-bicliques
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2007
%P 295-304
%V 41
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro:2007020/
%R 10.1051/ro:2007020
%G en
%F RO_2007__41_3_295_0
Cornaz, Denis. On co-bicliques. RAIRO - Operations Research - Recherche Opérationnelle, Tome 41 (2007) no. 3, pp. 295-304. doi : 10.1051/ro:2007020. http://archive.numdam.org/articles/10.1051/ro:2007020/

[1] D. Cornaz, A linear programming formulation for the maximum complete multipartite subgraph problem. Math. Program. B 105 (2006) 329-344. | Zbl

[2] D. Cornaz and J. Fonlupt, Chromatic characterization of biclique cover. Discrete Math. 306 (2006) 495-507. | Zbl

[3] D. Cornaz and A.R. Mahjoub, The maximum induced bipartite subgraph problem with edge weights. SIAM J. on Discrete Math. to appear. | MR | Zbl

[4] D. Cornaz, On forests, stable sets and polyhedra associated with clique partitions. Manuscript available on Optimization Online.

[5] V. Jost, Ordonnancement chromatique : polyèdres, complexité et classification. Thèse de l'Université Joseph Fourier, Grenoble (2006).

[6] M. Grötschel, L. Lovàsz and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1 (1981) 169-197. | Zbl

[7] D. Monson, N.J. Pullman and R. Rees, A survey of clique and biclique coverings and factorizations of (0,1)-matrices. Bull. I.C.A. 14 (1995) 17-86. | Zbl

[8] A. Schrijver, Combinatorial Optimization. Springer-Verlag, Berlin Heidelberg (2003). | Zbl

[9] A. Sebő, private communication.

Cité par Sources :