@article{CML_2010__2_3_333_0, author = {Torki-Hamza, Nabila}, title = {Laplaciens de graphes infinis {I,} graphes m\'etriquement complets}, journal = {Confluentes Mathematici}, pages = {333--350}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {2}, number = {3}, year = {2010}, doi = {10.1142/S179374421000020X}, language = {fr}, url = {http://archive.numdam.org/articles/10.1142/S179374421000020X/} }
TY - JOUR AU - Torki-Hamza, Nabila TI - Laplaciens de graphes infinis I, graphes métriquement complets JO - Confluentes Mathematici PY - 2010 SP - 333 EP - 350 VL - 2 IS - 3 PB - World Scientific Publishing Co Pte Ltd UR - http://archive.numdam.org/articles/10.1142/S179374421000020X/ DO - 10.1142/S179374421000020X LA - fr ID - CML_2010__2_3_333_0 ER -
%0 Journal Article %A Torki-Hamza, Nabila %T Laplaciens de graphes infinis I, graphes métriquement complets %J Confluentes Mathematici %D 2010 %P 333-350 %V 2 %N 3 %I World Scientific Publishing Co Pte Ltd %U http://archive.numdam.org/articles/10.1142/S179374421000020X/ %R 10.1142/S179374421000020X %G fr %F CML_2010__2_3_333_0
Torki-Hamza, Nabila. Laplaciens de graphes infinis I, graphes métriquement complets. Confluentes Mathematici, Tome 2 (2010) no. 3, pp. 333-350. doi : 10.1142/S179374421000020X. http://archive.numdam.org/articles/10.1142/S179374421000020X/
[1] M. Braverman, O. Milatovic et and M. Shubin, Russ. Math. Surv. 57, 641 (2002), DOI : 10.1070/RM2002v057n04ABEH000532.
[2] R. Carlson, J. Diff. Eqns. 6, 1 (1998).
[3] P. Chernoff, J. Funct. Anal. 12, 401 (1973), DOI : 10.1016/0022-1236(73)90003-7.
[4] Y. Colin de Verdière , Spectre de Graphes , Cours Spécialisés 4 ( Société Mathématique de France , 1998 ) .
[5] Y. Colin de Verdière, N. Torki-Hamza et F. Truc, Essential self-adjointness for combinatorial Schrödinger operators II : Metrically non complete graphs , arXiv :1006.5778v1 .
[6] Y. Colin de Verdière, N. Torki-Hamza et F. Truc, Essential self-adjointness for combinatorial Schrödinger operators III : Magnetic fields, En préparation (2010) .
[7] J. Dodziuk, Analysis, Geometry and Topology of Elliptic Operators, ed. (World Scientific, 2006) pp. 353–368.
[8] P. Exner et al. , Analysis on Graphs and its Applications , Proc. Symp. Pure Math ( Amer. Math. Soc. , 2008 ) .
[9] M. Gaffney, Ann. Math. 60, 140 (1954), DOI : 10.2307/1969703.
[10] M. Gaffney, Ann. Math. 78, 426 (1955).
[11] S. Golénia et C. Schumacher, The problem of deficiency indices for discrete Schrödinger operators on locally finite graphs , arXiv :1005.0165v1 .
[12] P. E. T. Jorgensen, J. Math. Phys. 49(7), 073510 (2008), DOI : 10.1063/1.2953684.
[13] P. Kuchment, Quantum Graphs : An Introduction and a Brief Survey, Proc. Symp. Pure Math (AMS, 2008) pp. 291–314.
[14] G. Nenciu and I. Nenciu, Ann. Henri Poincaré 10, 377 (2009), DOI : 10.1007/s00023-009-0412-1.
[15] I. M. Oleinik, Mathematical Notes 54, 934 (1993), DOI : 10.1007/BF01209558.
[16] M. Reed et and B. Simon , Methods of Modern Mathematical Physics I, Functional Analysis , II, Fourier Analysis, Self-adjointness ( New York Academic Press , 1980 ) .
[17] M. Shubin, Geometric Aspects of Partial Differential Equations, Proc. Sympos (Amer. Math. Soc., Roskilde, Denmark, 1998) pp. 257–269.
[18] M. Shubin, J. Funct. Anal. 186, 92 (2001), DOI : 10.1006/jfan.2001.3778.
[19] R. Strichartz, J. Funct. Anal. 52, 48 (1983), DOI : 10.1016/0022-1236(83)90090-3.
[20] N. Torki-Hamza, Stabilité des valeurs propres avec champ magnétique sur une variété Riemannienne et sur un graphe, Thèse de doctorat de l’Université de Grenoble I, France (1989) .
[21] H. Weyl, Nachr. Kgl. Ges. Wiss. Göttingen. Math.-Phys. Kl. 37 (1909).
[22] A. Weber, Analysis of the Physical Laplacian and the Heat Flow on a Locally Finite Graph [math.SP] (2010) , arXiv :0801.0812v4 .
[23] R. K. Wojciechowski, Stochastic Completness of Graphs, Ph.D. Thesis, The graduate Center of the City University of New York (2008) .
Cité par Sources :