@article{CML_2011__3_3_413_0, author = {Descombes, St\'ephane and Duarte, Max and Dumont, Thierry and Louvet, Violaine and Massot, Marc}, title = {Adaptive time splitting method for multi-scale evolutionary partial differential equations}, journal = {Confluentes Mathematici}, pages = {413--443}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {3}, number = {3}, year = {2011}, doi = {10.1142/S1793744211000412}, language = {en}, url = {http://archive.numdam.org/articles/10.1142/S1793744211000412/} }
TY - JOUR AU - Descombes, Stéphane AU - Duarte, Max AU - Dumont, Thierry AU - Louvet, Violaine AU - Massot, Marc TI - Adaptive time splitting method for multi-scale evolutionary partial differential equations JO - Confluentes Mathematici PY - 2011 SP - 413 EP - 443 VL - 3 IS - 3 PB - World Scientific Publishing Co Pte Ltd UR - http://archive.numdam.org/articles/10.1142/S1793744211000412/ DO - 10.1142/S1793744211000412 LA - en ID - CML_2011__3_3_413_0 ER -
%0 Journal Article %A Descombes, Stéphane %A Duarte, Max %A Dumont, Thierry %A Louvet, Violaine %A Massot, Marc %T Adaptive time splitting method for multi-scale evolutionary partial differential equations %J Confluentes Mathematici %D 2011 %P 413-443 %V 3 %N 3 %I World Scientific Publishing Co Pte Ltd %U http://archive.numdam.org/articles/10.1142/S1793744211000412/ %R 10.1142/S1793744211000412 %G en %F CML_2011__3_3_413_0
Descombes, Stéphane; Duarte, Max; Dumont, Thierry; Louvet, Violaine; Massot, Marc. Adaptive time splitting method for multi-scale evolutionary partial differential equations. Confluentes Mathematici, Tome 3 (2011) no. 3, pp. 413-443. doi : 10.1142/S1793744211000412. http://archive.numdam.org/articles/10.1142/S1793744211000412/
[1] A. Abdulle, Fourth order Chebyshev methods with recurrence relation, SIAM J. Sci. Comput. 23 (2002) 2041–2054.
[2] N. Y. Babaeva and G. V. Naidis, Two-dimensional modelling of positive streamer dynamics in non-uniform electric fields in air, J. Phys. D: Appl. Phys. 29 (1996) 2423–2431.
[3] S. Descombes, T. Dumont, V. Louvet and M. Massot, On the local and global errors of splitting approximations of reaction-diffusion equations with high spatial gradients, Int. J. Computer Math. 84 (2007) 749–765.
[4] S. Descombes, T. Dumont and M. Massot, Operator splitting for stiff nonlinear reaction-diffusion systems: Order reduction and application to spiral waves, in Pat- terns and Waves (Saint Petersburg, 2002) (AkademPrint, 2003), pp. 386–482.
[5] S. Descombes and M. Massot, Operator splitting for nonlinear reaction-diffusion sys- tems with an entropic structure: Singular perturbation and order reduction, Numer. Math. 97 (2004) 667–698.
[6] S. Descombes and M. Thalhammer, The Lie–Trotter splitting method for nonlinear evolutionary problems involving critical parameters. An exact local error representa- tion and application to nonlinear Schrödinger equations in the semi-classical regime, Preprint, available on HAL (http://hal.archives-ouvertes.fr/hal-00557593), 2010.
[7] M. Duarte, M. Massot, S. Descombes, C. Tenaud, T. Dumont, V. Louvet and F. Lau- rent, New resolution strategy for multi-scale reaction waves using time operator splitting and space adaptive multiresolution: Application to human ischemic stroke, ESAIM Proc. 2011, to appear.
[8] M. Duarte, M. Massot, S. Descombes, C. Tenaud, T. Dumont, V. Louvet and F. Laurent, New resolution strategy for multi-scale reaction waves using time operator splitting, space adaptive multiresolution and dedicated high order implicit/explicit time integrators, submitted to SIAM J. Sci. Comput., available on HAL (http://hal.archives-ouvertes.fr/hal-00457731), 2011.
[9] T. Dumont, M. Duarte, S. Descombes, M. A. Dronne, M. Massot and V. Louvet, Simulation of human ischemic stroke in realistic 3D geometry: A numerical strategy, submitted to Bull. Math. Biol., available on HAL (http://hal.archives-ouvertes.fr/hal- 00546223), 2011.
[10] I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics (Oxford Univ. Press, 1998).
[11] P. Gray and S. K. Scott, Chemical Oscillations and Instabilities (Oxford Univ. Press, 1994).
[12] W. Gröbner, Die Liereihen und ihre Anwendungen, 2nd edn. (VEB Deutscher Verlag, 1960, 1967).
[13] E. Hairer, C. Lubich and G. Wanne, Geometric Numerical Integration, 2nd edn. (Springer-Verlag, 2006).
[14] E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations, I, 2nd edn. (Springer-Verlag, 1993).
[15] E. Hairer and G. Wanner, Solving Ordinary Differential Equations, II, 2nd edn. (Springer-Verlag, 1996).
[16] O. M. Knio, H. N. Najm and P. S. Wyckoff, A semi-implicit numerical scheme for reacting flow, II. Stiff, operator-split formulation, J. Comput. Phys. 154 (1999) 428–467.
[17] O. Koch and M. Thalhammer, Embedded split-step formulae for the time integration of nonlinear evolution equations, preprint, 2010.
[18] A. N. Kolmogoroff, I. G. Petrovsky and N. S. Piscounoff, Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application a un problème biologique, Bull. l’Univ. d’état Moscou, Sér. Int. Sec. A Math. Méc. 1 (1937) 1–25.
[19] I. A. Kossyi, A. Yu Kostinsky, A. A. Matveyev and V. P. Silakov, Kinetic scheme of the non-equilibrium discharge in nitrogen–oxygen mixtures, Plasma Sources Sci. Technol. 1 (1992) 207–220.
[20] A. A. Kulikovsky, Positive streamer between parallel plate electrodes in atmospheric pressure air, J. Phys. D: Appl. Phys. 30 (1997) 441–450.
[21] R. Morrow and J. J. Lowke, Streamer propagation in air, J. Phys. D: Appl. Phys. 30 (1997) 614–627.
[22] E. S. Oran and J. P. Boris, Numerical Simulation of Reacting Flows, 2nd edn. (Cam- bridge Univ. Press, 2001).
[23] G. Pilla, D. Galley, D. Lacoste, F. Lacas, D. Veynante and C. O. Laux, Stabilization of a turbulent premixed flame using a nanosecond repetitively pulsed plasma, IEEE Trans. Plasma Sci. 34 (2006) 2471–2477.
[24] M. A. Singer, S. B. Pope and H. N. Najm, Modeling unsteady reacting flow with operator splitting and ISAT, Combustion and Flame 147 (2006) 150–162.
[25] G. Strang, Accurate partial difference methods, I. Linear Cauchy problems, Arch. Rational Mech. Anal. 12 (1963) 392–402.
[26] G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (1968) 506–517.
Cité par Sources :