Adaptive time splitting method for multi-scale evolutionary partial differential equations
Confluentes Mathematici, Tome 3 (2011) no. 3, pp. 413-443.
Publié le :
DOI : 10.1142/S1793744211000412
@article{CML_2011__3_3_413_0,
     author = {Descombes, St\'ephane and Duarte, Max and Dumont, Thierry and Louvet, Violaine and Massot, Marc},
     title = {Adaptive time splitting method for multi-scale evolutionary partial differential equations},
     journal = {Confluentes Mathematici},
     pages = {413--443},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {3},
     number = {3},
     year = {2011},
     doi = {10.1142/S1793744211000412},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1142/S1793744211000412/}
}
TY  - JOUR
AU  - Descombes, Stéphane
AU  - Duarte, Max
AU  - Dumont, Thierry
AU  - Louvet, Violaine
AU  - Massot, Marc
TI  - Adaptive time splitting method for multi-scale evolutionary partial differential equations
JO  - Confluentes Mathematici
PY  - 2011
SP  - 413
EP  - 443
VL  - 3
IS  - 3
PB  - World Scientific Publishing Co Pte Ltd
UR  - http://archive.numdam.org/articles/10.1142/S1793744211000412/
DO  - 10.1142/S1793744211000412
LA  - en
ID  - CML_2011__3_3_413_0
ER  - 
%0 Journal Article
%A Descombes, Stéphane
%A Duarte, Max
%A Dumont, Thierry
%A Louvet, Violaine
%A Massot, Marc
%T Adaptive time splitting method for multi-scale evolutionary partial differential equations
%J Confluentes Mathematici
%D 2011
%P 413-443
%V 3
%N 3
%I World Scientific Publishing Co Pte Ltd
%U http://archive.numdam.org/articles/10.1142/S1793744211000412/
%R 10.1142/S1793744211000412
%G en
%F CML_2011__3_3_413_0
Descombes, Stéphane; Duarte, Max; Dumont, Thierry; Louvet, Violaine; Massot, Marc. Adaptive time splitting method for multi-scale evolutionary partial differential equations. Confluentes Mathematici, Tome 3 (2011) no. 3, pp. 413-443. doi : 10.1142/S1793744211000412. http://archive.numdam.org/articles/10.1142/S1793744211000412/

[1] A. Abdulle, Fourth order Chebyshev methods with recurrence relation, SIAM J. Sci. Comput. 23 (2002) 2041–2054.

[2] N. Y. Babaeva and G. V. Naidis, Two-dimensional modelling of positive streamer dynamics in non-uniform electric fields in air, J. Phys. D: Appl. Phys. 29 (1996) 2423–2431.

[3] S. Descombes, T. Dumont, V. Louvet and M. Massot, On the local and global errors of splitting approximations of reaction-diffusion equations with high spatial gradients, Int. J. Computer Math. 84 (2007) 749–765.

[4] S. Descombes, T. Dumont and M. Massot, Operator splitting for stiff nonlinear reaction-diffusion systems: Order reduction and application to spiral waves, in Pat- terns and Waves (Saint Petersburg, 2002) (AkademPrint, 2003), pp. 386–482.

[5] S. Descombes and M. Massot, Operator splitting for nonlinear reaction-diffusion sys- tems with an entropic structure: Singular perturbation and order reduction, Numer. Math. 97 (2004) 667–698.

[6] S. Descombes and M. Thalhammer, The Lie–Trotter splitting method for nonlinear evolutionary problems involving critical parameters. An exact local error representa- tion and application to nonlinear Schrödinger equations in the semi-classical regime, Preprint, available on HAL (http://hal.archives-ouvertes.fr/hal-00557593), 2010.

[7] M. Duarte, M. Massot, S. Descombes, C. Tenaud, T. Dumont, V. Louvet and F. Lau- rent, New resolution strategy for multi-scale reaction waves using time operator splitting and space adaptive multiresolution: Application to human ischemic stroke, ESAIM Proc. 2011, to appear.

[8] M. Duarte, M. Massot, S. Descombes, C. Tenaud, T. Dumont, V. Louvet and F. Laurent, New resolution strategy for multi-scale reaction waves using time operator splitting, space adaptive multiresolution and dedicated high order implicit/explicit time integrators, submitted to SIAM J. Sci. Comput., available on HAL (http://hal.archives-ouvertes.fr/hal-00457731), 2011.

[9] T. Dumont, M. Duarte, S. Descombes, M. A. Dronne, M. Massot and V. Louvet, Simulation of human ischemic stroke in realistic 3D geometry: A numerical strategy, submitted to Bull. Math. Biol., available on HAL (http://hal.archives-ouvertes.fr/hal- 00546223), 2011.

[10] I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics (Oxford Univ. Press, 1998).

[11] P. Gray and S. K. Scott, Chemical Oscillations and Instabilities (Oxford Univ. Press, 1994).

[12] W. Gröbner, Die Liereihen und ihre Anwendungen, 2nd edn. (VEB Deutscher Verlag, 1960, 1967).

[13] E. Hairer, C. Lubich and G. Wanne, Geometric Numerical Integration, 2nd edn. (Springer-Verlag, 2006).

[14] E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations, I, 2nd edn. (Springer-Verlag, 1993).

[15] E. Hairer and G. Wanner, Solving Ordinary Differential Equations, II, 2nd edn. (Springer-Verlag, 1996).

[16] O. M. Knio, H. N. Najm and P. S. Wyckoff, A semi-implicit numerical scheme for reacting flow, II. Stiff, operator-split formulation, J. Comput. Phys. 154 (1999) 428–467.

[17] O. Koch and M. Thalhammer, Embedded split-step formulae for the time integration of nonlinear evolution equations, preprint, 2010.

[18] A. N. Kolmogoroff, I. G. Petrovsky and N. S. Piscounoff, Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application a un problème biologique, Bull. l’Univ. d’état Moscou, Sér. Int. Sec. A Math. Méc. 1 (1937) 1–25.

[19] I. A. Kossyi, A. Yu Kostinsky, A. A. Matveyev and V. P. Silakov, Kinetic scheme of the non-equilibrium discharge in nitrogen–oxygen mixtures, Plasma Sources Sci. Technol. 1 (1992) 207–220.

[20] A. A. Kulikovsky, Positive streamer between parallel plate electrodes in atmospheric pressure air, J. Phys. D: Appl. Phys. 30 (1997) 441–450.

[21] R. Morrow and J. J. Lowke, Streamer propagation in air, J. Phys. D: Appl. Phys. 30 (1997) 614–627.

[22] E. S. Oran and J. P. Boris, Numerical Simulation of Reacting Flows, 2nd edn. (Cam- bridge Univ. Press, 2001).

[23] G. Pilla, D. Galley, D. Lacoste, F. Lacas, D. Veynante and C. O. Laux, Stabilization of a turbulent premixed flame using a nanosecond repetitively pulsed plasma, IEEE Trans. Plasma Sci. 34 (2006) 2471–2477.

[24] M. A. Singer, S. B. Pope and H. N. Najm, Modeling unsteady reacting flow with operator splitting and ISAT, Combustion and Flame 147 (2006) 150–162.

[25] G. Strang, Accurate partial difference methods, I. Linear Cauchy problems, Arch. Rational Mech. Anal. 12 (1963) 392–402.

[26] G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (1968) 506–517.

Cité par Sources :