Adaptive time splitting method for multi-scale evolutionary partial differential equations
Confluentes Mathematici, Tome 3 (2011) no. 3, pp. 413-443.

This paper introduces an adaptive time splitting technique for the solution of stiff evolutionary PDEs that guarantees an effective error control of the simulation, independent of the fastest physical time scale for highly unsteady problems. The strategy considers a second-order Strang method and another lower order embedded splitting scheme that takes into account potential loss of order due to the stiffness featured by time-space multi-scale phenomena. The scheme is then built upon a precise numerical analysis of the method and a complementary numerical procedure, conceived to overcome classical restrictions of adaptive time stepping schemes based on lower order embedded methods, whenever asymptotic estimates fail to predict the dynamics of the problem. The performance of the method in terms of control of integration errors is evaluated by numerical simulations of stiff propagating waves coming from nonlinear chemical dynamics models as well as highly multi-scale nanosecond repetitively pulsed gas discharges, which allow to illustrate the method capabilities to consistently describe a broad spectrum of time scales and different physical scenarios for consecutive discharge/post-discharge phases.

Publié le :
DOI : 10.1142/S1793744211000412
Descombes, Stéphane 1 ; Duarte, Max 1 ; Dumont, Thierry 1 ; Louvet, Violaine 1 ; Massot, Marc 1

1
@article{CML_2011__3_3_413_0,
     author = {Descombes, St\'ephane and Duarte, Max and Dumont, Thierry and Louvet, Violaine and Massot, Marc},
     title = {Adaptive time splitting method for multi-scale evolutionary partial differential equations},
     journal = {Confluentes Mathematici},
     pages = {413--443},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {3},
     number = {3},
     year = {2011},
     doi = {10.1142/S1793744211000412},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1142/S1793744211000412/}
}
TY  - JOUR
AU  - Descombes, Stéphane
AU  - Duarte, Max
AU  - Dumont, Thierry
AU  - Louvet, Violaine
AU  - Massot, Marc
TI  - Adaptive time splitting method for multi-scale evolutionary partial differential equations
JO  - Confluentes Mathematici
PY  - 2011
SP  - 413
EP  - 443
VL  - 3
IS  - 3
PB  - World Scientific Publishing Co Pte Ltd
UR  - http://archive.numdam.org/articles/10.1142/S1793744211000412/
DO  - 10.1142/S1793744211000412
LA  - en
ID  - CML_2011__3_3_413_0
ER  - 
%0 Journal Article
%A Descombes, Stéphane
%A Duarte, Max
%A Dumont, Thierry
%A Louvet, Violaine
%A Massot, Marc
%T Adaptive time splitting method for multi-scale evolutionary partial differential equations
%J Confluentes Mathematici
%D 2011
%P 413-443
%V 3
%N 3
%I World Scientific Publishing Co Pte Ltd
%U http://archive.numdam.org/articles/10.1142/S1793744211000412/
%R 10.1142/S1793744211000412
%G en
%F CML_2011__3_3_413_0
Descombes, Stéphane; Duarte, Max; Dumont, Thierry; Louvet, Violaine; Massot, Marc. Adaptive time splitting method for multi-scale evolutionary partial differential equations. Confluentes Mathematici, Tome 3 (2011) no. 3, pp. 413-443. doi : 10.1142/S1793744211000412. http://archive.numdam.org/articles/10.1142/S1793744211000412/

[1] A. Abdulle, Fourth order Chebyshev methods with recurrence relation, SIAM J. Sci. Comput. 23 (2002) 2041–2054.

[2] N. Y. Babaeva and G. V. Naidis, Two-dimensional modelling of positive streamer dynamics in non-uniform electric fields in air, J. Phys. D: Appl. Phys. 29 (1996) 2423–2431.

[3] S. Descombes, T. Dumont, V. Louvet and M. Massot, On the local and global errors of splitting approximations of reaction-diffusion equations with high spatial gradients, Int. J. Computer Math. 84 (2007) 749–765.

[4] S. Descombes, T. Dumont and M. Massot, Operator splitting for stiff nonlinear reaction-diffusion systems: Order reduction and application to spiral waves, in Pat- terns and Waves (Saint Petersburg, 2002) (AkademPrint, 2003), pp. 386–482.

[5] S. Descombes and M. Massot, Operator splitting for nonlinear reaction-diffusion sys- tems with an entropic structure: Singular perturbation and order reduction, Numer. Math. 97 (2004) 667–698.

[6] S. Descombes and M. Thalhammer, The Lie–Trotter splitting method for nonlinear evolutionary problems involving critical parameters. An exact local error representa- tion and application to nonlinear Schrödinger equations in the semi-classical regime, Preprint, available on HAL (http://hal.archives-ouvertes.fr/hal-00557593), 2010.

[7] M. Duarte, M. Massot, S. Descombes, C. Tenaud, T. Dumont, V. Louvet and F. Lau- rent, New resolution strategy for multi-scale reaction waves using time operator splitting and space adaptive multiresolution: Application to human ischemic stroke, ESAIM Proc. 2011, to appear.

[8] M. Duarte, M. Massot, S. Descombes, C. Tenaud, T. Dumont, V. Louvet and F. Laurent, New resolution strategy for multi-scale reaction waves using time operator splitting, space adaptive multiresolution and dedicated high order implicit/explicit time integrators, submitted to SIAM J. Sci. Comput., available on HAL (http://hal.archives-ouvertes.fr/hal-00457731), 2011.

[9] T. Dumont, M. Duarte, S. Descombes, M. A. Dronne, M. Massot and V. Louvet, Simulation of human ischemic stroke in realistic 3D geometry: A numerical strategy, submitted to Bull. Math. Biol., available on HAL (http://hal.archives-ouvertes.fr/hal- 00546223), 2011.

[10] I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics (Oxford Univ. Press, 1998).

[11] P. Gray and S. K. Scott, Chemical Oscillations and Instabilities (Oxford Univ. Press, 1994).

[12] W. Gröbner, Die Liereihen und ihre Anwendungen, 2nd edn. (VEB Deutscher Verlag, 1960, 1967).

[13] E. Hairer, C. Lubich and G. Wanne, Geometric Numerical Integration, 2nd edn. (Springer-Verlag, 2006).

[14] E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations, I, 2nd edn. (Springer-Verlag, 1993).

[15] E. Hairer and G. Wanner, Solving Ordinary Differential Equations, II, 2nd edn. (Springer-Verlag, 1996).

[16] O. M. Knio, H. N. Najm and P. S. Wyckoff, A semi-implicit numerical scheme for reacting flow, II. Stiff, operator-split formulation, J. Comput. Phys. 154 (1999) 428–467.

[17] O. Koch and M. Thalhammer, Embedded split-step formulae for the time integration of nonlinear evolution equations, preprint, 2010.

[18] A. N. Kolmogoroff, I. G. Petrovsky and N. S. Piscounoff, Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application a un problème biologique, Bull. l’Univ. d’état Moscou, Sér. Int. Sec. A Math. Méc. 1 (1937) 1–25.

[19] I. A. Kossyi, A. Yu Kostinsky, A. A. Matveyev and V. P. Silakov, Kinetic scheme of the non-equilibrium discharge in nitrogen–oxygen mixtures, Plasma Sources Sci. Technol. 1 (1992) 207–220.

[20] A. A. Kulikovsky, Positive streamer between parallel plate electrodes in atmospheric pressure air, J. Phys. D: Appl. Phys. 30 (1997) 441–450.

[21] R. Morrow and J. J. Lowke, Streamer propagation in air, J. Phys. D: Appl. Phys. 30 (1997) 614–627.

[22] E. S. Oran and J. P. Boris, Numerical Simulation of Reacting Flows, 2nd edn. (Cam- bridge Univ. Press, 2001).

[23] G. Pilla, D. Galley, D. Lacoste, F. Lacas, D. Veynante and C. O. Laux, Stabilization of a turbulent premixed flame using a nanosecond repetitively pulsed plasma, IEEE Trans. Plasma Sci. 34 (2006) 2471–2477.

[24] M. A. Singer, S. B. Pope and H. N. Najm, Modeling unsteady reacting flow with operator splitting and ISAT, Combustion and Flame 147 (2006) 150–162.

[25] G. Strang, Accurate partial difference methods, I. Linear Cauchy problems, Arch. Rational Mech. Anal. 12 (1963) 392–402.

[26] G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (1968) 506–517.

Cité par Sources :