Let ξ(k, n) be the local time of a simple symmetric random walk on the line. We give a strong approximation of the centered local time process ξ(k, n)-ξ(0, n) in terms of a brownian sheet and an independent Wiener process (brownian motion), time changed by an independent brownian local time. Some related results and consequences are also established.
Soit ξ(k, n) le temps local d'une marche aléatoire simple et symétrique sur la droite réelle. Nous donnons une approximation forte de la différence des temps locaux ξ(k, n)-ξ(0, n) en termes d'un drap Brownien et d'un processus de Wiener indépendant, évalué au temps local d'un mouvement Brownien indépendant. Des applications de ce résultat sont établies.
Keywords: local time, random walk, brownian sheet, strong approximation
@article{AIHPB_2009__45_2_515_0, author = {Cs\'aki, Endre and Cs\"org\H{o}, Mikl\'os and F\"oldes, Ant\'onia and R\'ev\'esz, P\'al}, title = {Random walk local time approximated by a brownian sheet combined with an independent brownian motion}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {515--544}, publisher = {Gauthier-Villars}, volume = {45}, number = {2}, year = {2009}, doi = {10.1214/08-AIHP173}, mrnumber = {2521412}, zbl = {1179.60051}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/08-AIHP173/} }
TY - JOUR AU - Csáki, Endre AU - Csörgő, Miklós AU - Földes, Antónia AU - Révész, Pál TI - Random walk local time approximated by a brownian sheet combined with an independent brownian motion JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2009 SP - 515 EP - 544 VL - 45 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/08-AIHP173/ DO - 10.1214/08-AIHP173 LA - en ID - AIHPB_2009__45_2_515_0 ER -
%0 Journal Article %A Csáki, Endre %A Csörgő, Miklós %A Földes, Antónia %A Révész, Pál %T Random walk local time approximated by a brownian sheet combined with an independent brownian motion %J Annales de l'I.H.P. Probabilités et statistiques %D 2009 %P 515-544 %V 45 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/08-AIHP173/ %R 10.1214/08-AIHP173 %G en %F AIHPB_2009__45_2_515_0
Csáki, Endre; Csörgő, Miklós; Földes, Antónia; Révész, Pál. Random walk local time approximated by a brownian sheet combined with an independent brownian motion. Annales de l'I.H.P. Probabilités et statistiques, Volume 45 (2009) no. 2, pp. 515-544. doi : 10.1214/08-AIHP173. http://archive.numdam.org/articles/10.1214/08-AIHP173/
[1] Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, 1992. Reprint of the 1972 edition. | MR | Zbl
and , Eds.[2] Rates of convergence to Brownian local time. Stochastic Process. Appl. 47 (1993) 197-213. | MR | Zbl
and .[3] Approximation theorems for independent and weakly dependent random vectors. Ann. Probab. 7 (1979) 29-54. | MR | Zbl
and .[4] On the character of convergence to Brownian local time I. Probab. Theory Related Fields 72 (1986) 231-250. | MR | Zbl
.[5] On the character of convergence to Brownian local time II. Probab. Theory Related Fields 72 (1986) 251-277. | MR | Zbl
.[6] Brownian local time. Russian Math. Surveys 44 (1989) 1-51. | MR | Zbl
.[7] Handbook of Brownian Motion - Facts and Formulae, 2nd edition. Birkhäuser, Basel, 2002. | MR | Zbl
and .[8] Some path properties of iterated Brownian motion. In Seminar on Stochastic Processes 67-87. E. Çinlar, K. L. Chung and M. J. Sharpe (Eds). Progr. Probab. 33. Birkhäuser, Boston, 1993. | MR | Zbl
.[9] How big are the increments of the local time of a Wiener process? Ann. Probab. 11 (1983) 593-608. | MR | Zbl
, , and .[10] Brownian local time approximated by a Wiener sheet. Ann. Probab. 17 (1989) 516-537. | MR | Zbl
, , and .[11] Strong approximation of additive functionals. J. Theoret. Probab. 5 (1992) 679-706. | MR | Zbl
, , and .[12] How big are the increments of the local time of a recurrent random walk? Z. Wahrsch. verw. Gebiete 65 (1983) 307-322. | MR | Zbl
and .[13] On the local time process standardized by the local time at zero. Acta Math. Hungar. 52 (1988) 175-186. | MR | Zbl
and .[14] On best possible approximations of local time. Statist. Probab. Lett. 8 (1989) 301-306. | MR | Zbl
and .[15] Strong Approximations in Probability and Statistics. Academic Press, New York, 1981. | MR | Zbl
and .[16] On the stability of the local time of a symmetric random walk. Acta Sci. Math. (Szeged) 48 (1985) 85-96. | MR | Zbl
and .[17] Two limit theorems for the simplest random walk on a line. Uspehi Mat. Nauk (N. S.) 10 (1955) 139-146 (in Russian). | MR | Zbl
.[18] Branching processes in simple random walk. Proc. Amer. Math. Soc. 51 (1975) 270-274. | MR | Zbl
.[19] A Gaussian sheet connected to symmetric Markov chains. Séminaire de Probabilités XXXVI 331-334. Lecture Notes in Math. 1801. Springer, New York, 2003. | Numdam | MR | Zbl
.[20] Probability inequalities for sums of bounded random variables. J. Am. Statist. Assoc. 58 (1963) 13-30. | MR | Zbl
.[21] Stochastic Differential Equations and Diffusion Processes, 2nd edition. North-Holland, Amsterdam, 1989. | MR | Zbl
and .[22] Limit theorems of occupation times for Markov processes. Publ. Res. Inst. Math. Sci. 12 (1976/1977) 801-818. | MR | Zbl
.[23] Limit theorems for Lévy processes and Poisson point processes and their applications to Brownian excursions. J. Math. Kyoto Univ. 24 (1984) 521-538. | MR | Zbl
.[24] A limit theorem for sums of random number of i.i.d. random variables and its application to occupation times of Markov chains. J. Math. Soc. Japan 37 (1985) 197-205. | MR | Zbl
.[25] Occupation times for Markov and semi-Markov chains. Trans. Amer. Math. Soc. 103 (1962) 82-112. | MR | Zbl
.[26] Random walks and a sojourn density process of Brownian motion. Trans. Amer. Math. Soc. 109 (1963) 56-86. | MR | Zbl
.[27] Brownian local time and taboo processes. Trans. Amer. Math. Soc. 143 (1969) 173-185. | MR | Zbl
.[28] An approximation of partial sums of independent rv's and the sample df. I. Z. Wahrsch. verw. Gebiete 32 (1975) 111-131. | MR | Zbl
, and .[29] Processus stochastiques et mouvement Brownian, Deuxième edition. Gauthier-Villars & Cie, Paris, 1965. | MR | Zbl
.[30] Martingale approach to some limit theorems. In Duke Univ. Maths. Series III. Statistical Mechanics and Dynamical System. Duke Univ., Durham, 1977. | MR | Zbl
, and .[31] Local time and invariance. Lecture Notes in Math. 861 128-145. Springer, New York, 1981. | MR | Zbl
.[32] Random Walk in Random and Non-Random Environments, 2nd edition. World Scientific, Singapore, 2005. | MR | Zbl
.[33] Brownian local times and branching processes. Séminaire de Probabilités XVIII 42-55. Lecture Notes in Math. 1059. Springer, New York, 1984. | Numdam | MR | Zbl
.[34] Empirical Processes With Applications to Statistics. Wiley, New York, 1986. | MR | Zbl
and .[35] Asymptotic behavior of certain functionals of the Brownian motion. Ukrain. Mat. Z. 18 (1966) 60-71 (in Russian). | MR | Zbl
and .[36] Limit Theorems for Random Walk. Naukova Dumka, Kiev, 1970 (in Russian).
and .[37] Principles of Random Walk. Van Nostrand, Princeton, NJ, 1964. | MR | Zbl
.[38] No more than three favorite sites for simple random walk. Ann. Probab. 29 (2001) 484-503. | MR | Zbl
.[39] Le drap Brownian comme limite en loi de temps locaux linéaires. Séminaire de Probabilités XVII, 1981/82 89-105. Lecture Notes in Math. 986. Springer, New York, 1983. | Numdam | MR | Zbl
.Cited by Sources: