Quantitative recurrence in two-dimensional extended processes
Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) no. 4, pp. 1065-1084.

Sous certaines conditions, une marche aléatoire dans le plan est récurrente. En particulier, chaque trajectoire est dense, et il est naturel d'estimer le temps nécessaire pour revenir dans un petit voisinage de l'origine. Nous nous intéressons à cette question dans le cas de systèmes dynamiques étendus similaires à des marches aléatoires planaires, notamment celui des ℤ2-extension de sous-shifts de type fini mélangeants. Nous déterminons une vitesse de convergence ponctuelle que nous relions à la dimension du processus et nous établissons un résultat de convergence en loi du temps de retour à l'origine, correctement normalisé.

Under some mild condition, a random walk in the plane is recurrent. In particular each trajectory is dense, and a natural question is how much time one needs to approach a given small neighbourhood of the origin. We address this question in the case of some extended dynamical systems similar to planar random walks, including ℤ2-extension of mixing subshifts of finite type. We define a pointwise recurrence rate and relate it to the dimension of the process, and establish a result of convergence in distribution of the rescaled return time near the origin.

DOI : 10.1214/08-AIHP195
Classification : 37B20, 37A50, 60Fxx
Mots clés : return time, random walk, subshift of finite type, recurrence, local limit theorem
@article{AIHPB_2009__45_4_1065_0,
     author = {P\`ene, Fran\c{c}oise and Saussol, Beno{\^\i}t},
     title = {Quantitative recurrence in two-dimensional extended processes},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {1065--1084},
     publisher = {Gauthier-Villars},
     volume = {45},
     number = {4},
     year = {2009},
     doi = {10.1214/08-AIHP195},
     mrnumber = {2572164},
     zbl = {1230.37017},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1214/08-AIHP195/}
}
TY  - JOUR
AU  - Pène, Françoise
AU  - Saussol, Benoît
TI  - Quantitative recurrence in two-dimensional extended processes
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2009
SP  - 1065
EP  - 1084
VL  - 45
IS  - 4
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/articles/10.1214/08-AIHP195/
DO  - 10.1214/08-AIHP195
LA  - en
ID  - AIHPB_2009__45_4_1065_0
ER  - 
%0 Journal Article
%A Pène, Françoise
%A Saussol, Benoît
%T Quantitative recurrence in two-dimensional extended processes
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2009
%P 1065-1084
%V 45
%N 4
%I Gauthier-Villars
%U http://archive.numdam.org/articles/10.1214/08-AIHP195/
%R 10.1214/08-AIHP195
%G en
%F AIHPB_2009__45_4_1065_0
Pène, Françoise; Saussol, Benoît. Quantitative recurrence in two-dimensional extended processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) no. 4, pp. 1065-1084. doi : 10.1214/08-AIHP195. http://archive.numdam.org/articles/10.1214/08-AIHP195/

[1] L. Barreira and B. Saussol. Hausdorff dimension of measures via Poincaré recurrence. Commun. Math. Phys. 219 (2001) 443-463. | MR | Zbl

[2] R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Note in Mathematics 470. Springer, Berlin, 1975. | MR | Zbl

[3] L. Breiman. Probability. Addison-Wesley, Reading, MA, 1968. | MR | Zbl

[4] P. Collet, A. Galves and B. Schmitt. Repetition time for gibbsian sources. Nonlinearity 12 (1999) 1225-1237. | MR | Zbl

[5] D. Cheliotis. A note on recurrent random walks. Statist. Probab. Lett. 76 (2006) 1025-1031. | MR | Zbl

[6] J.-P. Conze. Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications. Ergodic Theory Dynam. Systems 19 (1999) 1233-1245. | MR | Zbl

[7] A. Dvoretzky and P. Erdös. Some problems on random walk in space. In Proc. Berkeley Sympos. Math. Statist. Probab. 353-367. California Univ. Press, Berkeley-Los Angeles, 1951. | MR | Zbl

[8] Y. Guivarc'H and J. Hardy. Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov. Ann. Inst. H. Poincaré, Probab. Statist. 24 (1988) 73-98. | Numdam | MR | Zbl

[9] M. Hirata. Poisson law for Axiom A diffeomorphism. Ergodic Theory Dynam. Systems 13 (1993) 533-556. | MR | Zbl

[10] H. Hennion and L. Hervé. Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness. Lecture Notes in Mathematics 1766. Springer, Berlin, 2001. | MR | Zbl

[11] S. V. Nagaev. Some limit theorems for stationary Markov chains. Theory Probab. Appl. 2 (1957) 378-406. (Translation from Teor. Veroyatn. Primen. 2 (1958) 389-416.) | MR | Zbl

[12] S. V. Nagaev. More exact statement of limit theorems for homogeneous Markov chains. Theory Probab. Appl. 6 (1961) 62-81. (Translation from Teor. Veroyatn. Primen 6 (1961) 67-86.) | MR | Zbl

[13] D. Ornstein and B. Weiss. Entropy and data compression. IEEE Trans. Inform. Theory 39 (1993) 78-83. | MR | Zbl

[14] B. Saussol. Recurrence rate in rapidly mixing dynamical systems. Discrete Contin. Dyn. Syst. 15 (2006) 259-267. | MR | Zbl

[15] B. Saussol, S. Troubetzkoy and S. Vaienti. Recurrence, dimension and Lyapunov exponents. J. Stat. Phys. 106 (2002) 623-634. | MR | Zbl

[16] K. Schmidt. On joint recurrence. C. R. Acad. Sci. Paris 327 (1998) 837-842. | MR | Zbl

Cité par Sources :