Soit une famille de mesures de Lévy, ce travail étudie la régularité de fonctions harmoniques et la propriété de Feller du processus de saut correspondant. Le but principal est d'établir des estimations de continuité pour les fonctions harmoniques sous des conditions faibles sur la famille . À la différence des contributions précédentes cette méthode couvre des cas où les bornes inférieures de la probabilité d'atteindre de petits ensembles dégénèrent.
Given a family of Lévy measures , the present work deals with the regularity of harmonic functions and the Feller property of corresponding jump processes. The main aim is to establish continuity estimates for harmonic functions under weak assumptions on the family . Different from previous contributions the method covers cases where lower bounds on the probability of hitting small sets degenerate.
Mots-clés : jump processes, Lévy measure, Feller property, martingale problem, integro-differential operators, harmonic functions, a priori estimates
@article{AIHPB_2009__45_4_1099_0, author = {Husseini, Ryad and Kassmann, Moritz}, title = {Jump processes, $L$-harmonic functions, continuity estimates and the {Feller} property}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1099--1115}, publisher = {Gauthier-Villars}, volume = {45}, number = {4}, year = {2009}, doi = {10.1214/08-AIHP208}, mrnumber = {2572166}, zbl = {1203.60125}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/08-AIHP208/} }
TY - JOUR AU - Husseini, Ryad AU - Kassmann, Moritz TI - Jump processes, $L$-harmonic functions, continuity estimates and the Feller property JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2009 SP - 1099 EP - 1115 VL - 45 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/08-AIHP208/ DO - 10.1214/08-AIHP208 LA - en ID - AIHPB_2009__45_4_1099_0 ER -
%0 Journal Article %A Husseini, Ryad %A Kassmann, Moritz %T Jump processes, $L$-harmonic functions, continuity estimates and the Feller property %J Annales de l'I.H.P. Probabilités et statistiques %D 2009 %P 1099-1115 %V 45 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/08-AIHP208/ %R 10.1214/08-AIHP208 %G en %F AIHPB_2009__45_4_1099_0
Husseini, Ryad; Kassmann, Moritz. Jump processes, $L$-harmonic functions, continuity estimates and the Feller property. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) no. 4, pp. 1099-1115. doi : 10.1214/08-AIHP208. http://archive.numdam.org/articles/10.1214/08-AIHP208/
[1] Non-local Dirichlet form and symmetric jump processes. Trans. Amer. Math. Soc. 361 (2009) 1963-1999. | MR | Zbl
, , and .[2] Harnack inequalities for non-local operators of variable order. Trans. Amer. Math. Soc. 357(2) (2005) 837-850 (electronic). | MR | Zbl
and .[3] Hölder continuity of harmonic functions with respect to operators of variable orders. Comm. Partial Differential Equations 30 (2005) 1249-1259. | MR | Zbl
and .[4] Harnack inequalities for jump processes. Potential Anal. 17(4) (2002) 375-388. | MR | Zbl
and .[5] Transition probabilities for symmetric jump processes. Trans. Amer. Math. Soc. 354(7) (2002) 2933-2953. | MR | Zbl
and .[6] Symmetric jump processes: Localization, heat kernels, and convergence. Ann. Inst. H. Poincaré. To appear, 2009.
, and .[7] Symmetric jump processes and their heat kernel estimates. Sci. China Ser. A 52(7) (2009) 1423-1445. | MR
.[8] Heat kernel estimates for stable-like processes on d-sets. Stochastic Process. Appl. 108(1) (2003) 27-62. | MR | Zbl
and .[9] Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 (1957) 25-43. | MR | Zbl
.[10] Markov Processes. Wiley, New York, 1986. | MR | Zbl
and .[11] Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter, Berlin, 1994. | MR | Zbl
, and .[12] The martingale problem for a class of pseudo-differential operators. Math. Ann. 300(1) (1994) 121-147. | MR | Zbl
.[13] A symbolic calculus for pseudo-differential operators generating Feller semigroups. Osaka J. Math. 35(4) (1998) 789-820. | MR | Zbl
.[14] Markov chain approximations for symmetric jump processes. Potential Anal. 27(4) (2007) 353-380. | MR | Zbl
and .[15] Feller semigroups, Dirichlet forms, and pseudodifferential operators. Forum Math. 4(5) (1992) 433-446. | MR | Zbl
.[16] A class of Feller semigroups generated by pseudo-differential operators. Math. Z. 215(1) (1994) 151-166. | MR | Zbl
.[17] Pseudo Differential Operators and Markov Processes. Vol. III. Imperial College Press, London, 2005. | MR | Zbl
.[18] A priori estimates for integro-differential operators with measurable kernels. Calc. Var. Partial Differential Equations 34(1) (2009) 1-21. | MR | Zbl
.[19] Continuity estimates for solutions of parabolic equations associated with jump type Dirichlet forms. Osaka J. Math. 25(3) (1988) 697-728. | MR | Zbl
.[20] Uniform estimates for fundamental solutions associated with non-local Dirichlet forms. Osaka J. Math. 32(4) (1995) 833-860. | MR | Zbl
.[21] An estimate for the probability of a diffusion process hitting a set of positive measure. Dokl. Akad. Nauk SSSR 245(1) (1979) 18-20. | MR | Zbl
and .[22] Second Order Equations of Elliptic and Parabolic Type. Amer. Math. Soc., Providence, RI, 1998. | MR | Zbl
.[23] Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80 (1958) 931-954. | MR | Zbl
.[24] Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press, Cambridge, 1999. | MR | Zbl
.[25] Hölder estimates for solutions of integro differential equations like the fractional Laplace. Indiana Univ. Math. J. 55(3) (2006) 1155-1174. | MR | Zbl
.[26] Dirichlet forms generated by pseudo differential operators: On the Feller property of the associated stochastic process. Tohoku Math. J. 59 (2007) 401-422. | MR | Zbl
and .[27] Harnack inequality for some classes of Markov processes. Math. Z. 246(1, 2) (2004) 177-202. | MR | Zbl
and .Cité par Sources :