We prove an almost isometric reverse Hölder inequality for the euclidean norm on an isotropic generalized Orlicz ball which interpolates Paouris concentration inequality and variance conjecture. We study in this direction the case of isotropic convex bodies with an unconditional basis and the case of general convex bodies.
Nous prouvons une inégalité inverse Hölder presque isométrique pour la norme euclidienne sur une boule d'Orlicz généralisée isotrope qui interpole l'inégalité de concentration de Paouris et la conjecture de la variance. Nous étudions dans ce sens le cas des corps convexes isotropes à base inconditionnelle et celui des corps convexes généraux.
Keywords: concentration inequalities, convex bodies
@article{AIHPB_2010__46_2_299_0, author = {Fleury, B.}, title = {Between {Paouris} concentration inequality and variance conjecture}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {299--312}, publisher = {Gauthier-Villars}, volume = {46}, number = {2}, year = {2010}, doi = {10.1214/09-AIHP315}, mrnumber = {2667700}, zbl = {1214.46006}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/09-AIHP315/} }
TY - JOUR AU - Fleury, B. TI - Between Paouris concentration inequality and variance conjecture JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2010 SP - 299 EP - 312 VL - 46 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/09-AIHP315/ DO - 10.1214/09-AIHP315 LA - en ID - AIHPB_2010__46_2_299_0 ER -
%0 Journal Article %A Fleury, B. %T Between Paouris concentration inequality and variance conjecture %J Annales de l'I.H.P. Probabilités et statistiques %D 2010 %P 299-312 %V 46 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/09-AIHP315/ %R 10.1214/09-AIHP315 %G en %F AIHPB_2010__46_2_299_0
Fleury, B. Between Paouris concentration inequality and variance conjecture. Annales de l'I.H.P. Probabilités et statistiques, Volume 46 (2010) no. 2, pp. 299-312. doi : 10.1214/09-AIHP315. http://archive.numdam.org/articles/10.1214/09-AIHP315/
[1] The central limit problem for convex bodies. Trans. Amer. Math. Soc. 355 (2003) 4723-4735. | MR | Zbl
, and .[2] Remarks on the growth of Lp-norms of polynomials. In Geometric Aspects of Functionnal Analysis 27-35. Lecture Notes in Math. 1745. Springer, Berlin, 2000. | MR | Zbl
.[3] Spectral gap and concentration for some spherically symmetric probability measures. In Geometric Aspects of Functional Analysis - Israel Seminar 37-43. Lecture Notes in Math. 1807. Springer, Berlin, 2003. | MR | Zbl
.[4] On the central limit property of convex convex bodies. In Geometric Aspects of Functional Analysis - Israel Seminar 44-52. Lecture Notes in Math. 1807. Springer, Berlin, 2003. | MR | Zbl
and .[5] The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems. J. Funct. Anal. 214 (2004), 410-427. | MR | Zbl
, and .[6] A stability result for mean width of Lp-centroid bodies. Adv. Math. 214 (2007) 865-877. | MR | Zbl
, and .[7] The Brunn-Minkowski inequality. Bull. Amer. Math. Soc. 39 (2002) 355-405. | MR | Zbl
.[8] On the infimum convolution inequality. Available at arXiv: 0801.4036. | MR | Zbl
and .[9] Power-law estimates for the central limit theorem for convex sets. J. Funct. Anal. 245 (2007) 284-310. | MR | Zbl
.[10] A Berry-Esseen type inequality for convex bodies with an unconditional basis. Probab. Theory Related Fields. 45 (2009) 1-33. | MR | Zbl
.[11] Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom. 13 (1995) 541-559. | MR | Zbl
, and .[12] On the role of convexity in isoperimetry, spectral-gap and concentration. Available at arXiv: 0712.4092. | MR | Zbl
.[13] Asymptotic Theory of Finite Dimensional Normed Spaces. Lecture Notes in Math. 1200. Springer, Berlin, 1986. | MR | Zbl
and .[14] Concentration of mass in convex bodies. Geom. Funct. Anal. 16 (2006) 1021-1049. | MR | Zbl
.[15] The negative association property for the absolute values of random variables equidistributed on a generalized Orlicz ball. Positivity 12 (2008) 421-474. | MR | Zbl
and .[16] An isoperimetric inequality on the lp balls. Ann. Inst. H. Poincaré Probab. Statist. 44 (2008) 362-373. | Numdam | MR | Zbl
.[17] The square negative correlation property for generalized Orlicz balls. In Geometric Aspects of Functional Analysis - Israel Seminar 305-313. Lecture Notes in Math. 1910. Springer, Berlin, 2007. | MR | Zbl
.Cited by Sources: