Nous prouvons une inégalité isopérimétrique pour la mesure uniforme
The normalised volume measure on the
Mots-clés : isoperimetric inequalities, volume measure
@article{AIHPB_2008__44_2_362_0, author = {Sodin, Sasha}, title = {An isoperimetric inequality on the $\ell _p$ balls}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {362--373}, publisher = {Gauthier-Villars}, volume = {44}, number = {2}, year = {2008}, doi = {10.1214/07-AIHP121}, zbl = {1181.60025}, language = {en}, url = {https://www.numdam.org/articles/10.1214/07-AIHP121/} }
TY - JOUR AU - Sodin, Sasha TI - An isoperimetric inequality on the $\ell _p$ balls JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 362 EP - 373 VL - 44 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/07-AIHP121/ DO - 10.1214/07-AIHP121 LA - en ID - AIHPB_2008__44_2_362_0 ER -
Sodin, Sasha. An isoperimetric inequality on the $\ell _p$ balls. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 2, pp. 362-373. doi : 10.1214/07-AIHP121. https://www.numdam.org/articles/10.1214/07-AIHP121/
[1] Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Amer. Math. Soc. 4 (1976) 165. | MR | Zbl
.[2] Log-concave and spherical models in isoperimetry. Geom. Funct. Anal. 12 (2002) 32-55. | MR | Zbl
.[3] Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry. Rev. Math. Iberoamericana 22 (2005) 993-1067. | MR | Zbl
, and .[4] A probabilistic approach to the geometry of the ℓnp-ball. Ann. Probab. 33 (2005) 480-513. | MR | Zbl
, , and .[5] Sobolev inequalities for probability measures on the real line. Studia Math. 159 (2003) 481-497. | MR | Zbl
and .[6] Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab. 27 (1999) 1903-1921. | MR | Zbl
.[7] Spectral gap and concentration for some spherically symmetric probability measures. Geometric Aspects of Functional Analysis (Notes of GAFA Seminar) 37-43. Lecture Notes in Math. 1807. Springer, Berlin, 2003. | MR | Zbl
.[8] An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space. Ann. Probab. 25 (1997) 206-214. | MR | Zbl
.[9] On isoperimetric constants for log-concave probability distributions. Lecture Notes in Math. 1910 (2007) 81-88. | MR | Zbl
.[10] Extremal properties of half-spaces for log-concave distributions. Ann. Probab. 24 (1996) 35-48. | MR | Zbl
.[11] Isoperimetric constants for product probability measures. Ann. Probab. 25 (1997) 184-205. | MR | Zbl
and .[12] Entropy bounds and isoperimetry. Mem. Amer. Math. Soc. 176 (2005) 829. | MR | Zbl
and .[13] Zerlegung konvexer Körper durch minimale Trennflächen. J. Reine Angew. Math. 311/312 (1979) 80-100. | MR | Zbl
and .[14] The Brunn-Minkowski inequality in Gauss space. Invent. Math. 30 (1975) 207-216. | MR | Zbl
.[15] On the distribution of polynomials on high-dimensional convex sets. Geometric aspects of functional analysis (Notes of GAFA Seminar) 127-137. Lecture Notes in Math. 1469. Springer, Berlin, 1991. | MR | Zbl
.[16] Certain questions of potential theory and function theory for regions with irregular boundaries. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 3 (1967) 152. (English translation: Potential theory and function theory for irregular regions. Seminars in Mathematics. V. A. Steklov Mathematical Institute, Leningrad, Vol. 3, Consultants Bureau, New York, 1969) | MR | Zbl
and .[17] Normal and integral currents. Ann. of Math. (2) 72 (1960) 458-520. | MR | Zbl
and .[18] On convex perturbations with a bounded isotropic constant. Geom. Funct. Anal. 16 (2006) 1274-1290. | MR | Zbl
.[19] Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom. 13 (1995) 541-559. | MR | Zbl
, and .[20] Spectral gap, logarithmic Sobolev constant, and geometric bounds. In Surveys in Differential Geometry. Vol. IX 219-240. Int. Press, Somerville, MA, 2004. | MR | Zbl
.[21] Between Sobolev and Poincaré. Geometric Aspects of Functional Analysis (Notes of GAFA Seminar) 147-168. Lecture Notes in Math. 1745. Springer, Berlin, 2000. | MR | Zbl
and .[22] Classes of domains and imbedding theorems for function spaces. Dokl. Akad. Nauk SSSR 133 (1960) 527-530. (Russian). Translated as Soviet Math. Dokl. 1 (1960) 882-885. | MR | Zbl
.[23] Concentration of mass on isotropic convex bodies. C. R. Math. Acad. Sci. Paris 342 (2006) 179-182. | MR | Zbl
.[24] On the volume of the intersection of two Lnp balls. Proc. Amer. Math. Soc. 110 (1990) 217-224. | MR | Zbl
and .[25] Concentration on the ℓnp ball. Geometric Aspects of Functional Analysis (Notes of GAFA Seminar) 245-256. Lecture Notes in Math. 1745. Springer, Berlin, 2000. | MR | Zbl
and .[26] Extremal properties of half-spaces for spherically invariant measures. Problems in the theory of probability distributions, II. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 41 (1974) 14-24, 165. (Russian). | MR | Zbl
and .Cité par Sources :