Dans cet article, on prouve un résultat reliant les versions carré et rectangulaire de la R-transformée, qui a pour conséquence une relation surprenante entre les versions carré et rectangulaire de la convolution libre additive, impliquant la loi de Marchenko-Pastur. On donne des conséquences de ce résultat portant sur les matrices aléatoires, sur l'infinie divisibilité et sur l'arithmétique des versions carré des convolutions additives et multiplicatives.
In this paper, we prove a result linking the square and the rectangular R-transforms, the consequence of which is a surprising relation between the square and rectangular versions the free additive convolutions, involving the Marchenko-Pastur law. Consequences on random matrices, on infinite divisibility and on the arithmetics of the square versions of the free additive and multiplicative convolutions are given.
Mots-clés : free probability, random matrices, free convolution, infinitely divisible laws, Marchenko-Pastur law
@article{AIHPB_2010__46_3_644_0, author = {Benaych-Georges, Florent}, title = {On a surprising relation between the {Marchenko-Pastur} law, rectangular and square free convolutions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {644--652}, publisher = {Gauthier-Villars}, volume = {46}, number = {3}, year = {2010}, doi = {10.1214/09-AIHP324}, mrnumber = {2682261}, zbl = {1206.46055}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/09-AIHP324/} }
TY - JOUR AU - Benaych-Georges, Florent TI - On a surprising relation between the Marchenko-Pastur law, rectangular and square free convolutions JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2010 SP - 644 EP - 652 VL - 46 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/09-AIHP324/ DO - 10.1214/09-AIHP324 LA - en ID - AIHPB_2010__46_3_644_0 ER -
%0 Journal Article %A Benaych-Georges, Florent %T On a surprising relation between the Marchenko-Pastur law, rectangular and square free convolutions %J Annales de l'I.H.P. Probabilités et statistiques %D 2010 %P 644-652 %V 46 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/09-AIHP324/ %R 10.1214/09-AIHP324 %G en %F AIHPB_2010__46_3_644_0
Benaych-Georges, Florent. On a surprising relation between the Marchenko-Pastur law, rectangular and square free convolutions. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) no. 3, pp. 644-652. doi : 10.1214/09-AIHP324. http://archive.numdam.org/articles/10.1214/09-AIHP324/
[1] Free Bessel laws. Canad. J. of Math. To appear, 2009. | MR | Zbl
, , and .[2] A note on regularity for free convolutions. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006) 635-648. | Numdam | MR | Zbl
,[3] Regularization by free additive convolution, square and rectangular cases. Complex Anal. Oper. Theory. To appear, 2009. | MR | Zbl
, and .[4] Failure of the Raikov theorem for free random variables. In Séminaire de Probabilités XXXVIII 313-320. Springer, Berlin, 2004. | MR
.[5] Infinitely divisible distributions for rectangular free convolution: Classification and matricial interpretation. Probab. Theory Related Fields 139 (2007) 143-189. | MR | Zbl
.[6] Rectangular random matrices, related free entropy and free Fisher's information. J. Oper. Theory. To appear, 2009. | MR
.[7] Rectangular random matrices, related convolution. Probab. Theory Related Fields 144 (2009) 471-515. | MR | Zbl
.[8] Stable laws and domains of attraction in free probability theory. With an appendix by P. Biane. Ann. Math. 149 (1999) 1023-1060. | MR | Zbl
and .[9] Free convolution of measures with unbounded supports. Indiana Univ. Math. J. 42 (1993) 733-773. | MR | Zbl
and .[10] Superconvergence to the central limit and failure of the Cramér theorem for free random variables. Probab. Theory Related Fields 102 (1995) 215-222. | MR | Zbl
and .[11] Limit theorems in free probability theory. I. Ann. Probab. 36 (2008) 54-90. | MR | Zbl
and .[12] Limit theorems in free probability theory. II. Cent. Eur. J. Math. 6 (2008) 87-117. | EuDML | MR | Zbl
and .[13] Multiplicative free convolution and information-plus-noise type matrices. arXiv. (The submitted version of this paper, more focused on applications than on the result we are interested in here, is [14].)
and .[14] Free deconvolution for signal processing applications. To appear, 2009.
and .[15] Limit Distributions for Sums of Independent Random Variables. Adisson-Wesley, Cambridge, MA, 1954. | Zbl
and .[16] The Semicircle Law, Free Random Variables, and Entropy. Mathematical Surveys and Monographs 77. Amer. Math. Soc., Providence, RI, 2000. | MR | Zbl
and .[17] Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series 335. Cambridge Univ. Press, Cambridge, 2006. | MR | Zbl
and .[18] Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68. Cambridge Univ. Press, Cambridge, 1999. | MR | Zbl
.[19] Free Random Variables. CRM Monographs Series 1. Amer. Math. Soc., Providence, RI, 1992. | MR | Zbl
, and .Cité par Sources :