We improve the geometric properties of processes derived in an earlier paper, which are then used to obtain more results about the duality of SLE. We find that for κ∈(4, 8), the boundary of a standard chordal SLE(κ) hull stopped on swallowing a fixed x∈ℝ∖{0} is the image of some trace started from a random point. Using this fact together with a similar proposition in the case that κ≥8, we obtain a description of the boundary of a standard chordal SLE(κ) hull for κ>4, at a finite stopping time. Finally, we prove that for κ>4, in many cases, a chordal or strip trace a.s. ends at a single point.
Nous améliorons des résultats précédemment obtenus concernant les propriétés géométriques des processus , que nous utilisons ensuite pour étudier la propriété dite de dualité des processus SLE. Nous prouvons que pour κ∈(4, 8), la frontière de l'enveloppe d'un SLE(κ) chordal standard arrêté quand il disconnecte un point fixe x∈ℝ\{0} de l'infini est une courbe issue d'un point aléatoire. Nous obtenons ainsi une description de la frontière de l'enveloppe d'un SLE(κ) pour κ>4. Finalement, nous démontrons que pour κ>4, dans de nombreux cas, la courbe de processus généralisés (par exemple dans une bande) se termine presque sûrement en un point unique.
@article{AIHPB_2010__46_3_740_0, author = {Zhan, Dapeng}, title = {Duality of chordal {SLE,} {II}}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {740--759}, publisher = {Gauthier-Villars}, volume = {46}, number = {3}, year = {2010}, doi = {10.1214/09-AIHP340}, mrnumber = {2682265}, zbl = {1200.60071}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/09-AIHP340/} }
TY - JOUR AU - Zhan, Dapeng TI - Duality of chordal SLE, II JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2010 SP - 740 EP - 759 VL - 46 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/09-AIHP340/ DO - 10.1214/09-AIHP340 LA - en ID - AIHPB_2010__46_3_740_0 ER -
Zhan, Dapeng. Duality of chordal SLE, II. Annales de l'I.H.P. Probabilités et statistiques, Volume 46 (2010) no. 3, pp. 740-759. doi : 10.1214/09-AIHP340. http://archive.numdam.org/articles/10.1214/09-AIHP340/
[1] Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill, New York, 1973. | MR | Zbl
.[2] Hausdorff dimensions for SLE6. Ann. Probab. 32 (2004) 2606-2629. | MR | Zbl
.[3] The dimension of the SLE curves. Ann. Probab. 36 (2008) 1421-1452. | MR | Zbl
.[4] Duality of Schramm-Loewner evolutions. Ann. Sci. École Norm. Sup. (4) 42 (2009) 697-724. | Numdam | MR | Zbl
.[5] Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32 (2004) 939-995. | MR | Zbl
, and .[6] Continuous Martingales and Brownian Motion. Springer, Berlin, 1991. | MR | Zbl
and .[7] Basic properties of SLE. Ann. Math. 161 (2005) 883-924. | MR | Zbl
and .[8] Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118 (2000) 221-288. | MR | Zbl
.[9] Duality of chordal SLE. Inven. Math. 174 (2008) 309-353. | MR | Zbl
.[10] The scaling limits of planar LERW in finitely connected domains. Ann. Probab. 36 (2008) 467-529. | MR | Zbl
.[11] Reversibility of chordal SLE. Ann. Probab. 36 (2008) 1472-1494. | MR | Zbl
.Cited by Sources: