Nous proposons d’étudier un processus à sauts avec une mesure de sauts déterminée par un processus représentant une “mémoire”. L’espace d’états de est le produit Cartesien du cercle trigonométrique et de l’axe réel. Nous démontrons que la distribution stationnaire de est la mesure produit d’une loi uniforme et d’une loi Gaussienne.
We analyze a jump processes with a jump measure determined by a “memory” process . The state space of is the Cartesian product of the unit circle and the real line. We prove that the stationary distribution of is the product of the uniform probability measure and a Gaussian distribution.
Mots-clés : stationary distribution, stable Lévy process, process with memory
@article{AIHPB_2012__48_3_609_0, author = {Burdzy, K. and Kulczycki, T. and Schilling, R. L.}, title = {Stationary distributions for jump processes with memory}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {609--630}, publisher = {Gauthier-Villars}, volume = {48}, number = {3}, year = {2012}, doi = {10.1214/11-AIHP428}, mrnumber = {2976556}, zbl = {1263.60072}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/11-AIHP428/} }
TY - JOUR AU - Burdzy, K. AU - Kulczycki, T. AU - Schilling, R. L. TI - Stationary distributions for jump processes with memory JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2012 SP - 609 EP - 630 VL - 48 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/11-AIHP428/ DO - 10.1214/11-AIHP428 LA - en ID - AIHPB_2012__48_3_609_0 ER -
%0 Journal Article %A Burdzy, K. %A Kulczycki, T. %A Schilling, R. L. %T Stationary distributions for jump processes with memory %J Annales de l'I.H.P. Probabilités et statistiques %D 2012 %P 609-630 %V 48 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/11-AIHP428/ %R 10.1214/11-AIHP428 %G en %F AIHPB_2012__48_3_609_0
Burdzy, K.; Kulczycki, T.; Schilling, R. L. Stationary distributions for jump processes with memory. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) no. 3, pp. 609-630. doi : 10.1214/11-AIHP428. http://archive.numdam.org/articles/10.1214/11-AIHP428/
[1] Heat kernel upper bounds for jump processes and the first exit time. J. Reine Angew. Math. 626 (2009) 135-157. | MR | Zbl
, and .[2] Stationary distributions for diffusions with inert drift. Probab. Theory Related Fields 146 (2010) 1-47. | MR | Zbl
, , and .[3] Stationary distributions for jump processes with inert drift. Preprint, 2010. Available at arXiv:1009.2347.
, and .[4] A Gaussian oscillator. Electron. Commun. Probab. 9 (2004) 92-95. | MR | Zbl
and .[5] Markov processes with product-form stationary distribution. Electron. Commun. Probab. 13 (2008) 614-627. | MR | Zbl
and .[6] Markov Processes: Characterization and Convergence. Wiley, New York, 1986. | MR | Zbl
and .[7] A construction of Markov processes by piecing out. Proc. Japan Acad. Ser. A Math. Sci. 42 (1966) 370-375. | MR | Zbl
, and .[8] Renaissance, recollements, mélanges, ralentissement de processus de Markov. Ann. Inst. Fourier (Grenoble) 25 (1975) 464-497. | Numdam | MR | Zbl
.[9] Topics in Ergodic Theory. Princeton Univ. Press, Princeton, NJ, 1994. | MR | Zbl
.Cité par Sources :