Si des contraintes d'indépendance conditionnelle définissent une famille de distributions positives qui est log-convexe, alors cette famille doit être un modèle de Markov sur un graphe non-dirigé. Ceci est démontré pour les distributions sur le produits d'ensembles finis et pour les distributions gaussiennes régulières. Par conséquent, l'assertion connue comme le théorème de factorisation de Brook, le théorème de Hammersley-Clifford ou l'équivalence de Gibbs-Markov est obtenue.
If conditional independence constraints define a family of positive distributions that is log-convex then this family turns out to be a Markov model over an undirected graph. This is proved for the distributions on products of finite sets and for the regular Gaussian ones. As a consequence, the assertion known as Brook factorization theorem, Hammersley-Clifford theorem or Gibbs-Markov equivalence is obtained.
Mots-clés : conditional independence, Markov properties, factorizable distributions, graphical Markov models, log-convexity, Gibbs-Markov equivalence, Markov fields, Hammersley-Clifford theorem, contingency tables, Gibbs potentials, multivariate gaussian distributions, positive definite matrices, covariance selection model
@article{AIHPB_2012__48_4_1137_0, author = {Mat\'u\v{s}, Franti\v{s}ek}, title = {On conditional independence and log-convexity}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1137--1147}, publisher = {Gauthier-Villars}, volume = {48}, number = {4}, year = {2012}, doi = {10.1214/11-AIHP431}, mrnumber = {3052406}, zbl = {1253.62036}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/11-AIHP431/} }
TY - JOUR AU - Matúš, František TI - On conditional independence and log-convexity JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2012 SP - 1137 EP - 1147 VL - 48 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/11-AIHP431/ DO - 10.1214/11-AIHP431 LA - en ID - AIHPB_2012__48_4_1137_0 ER -
%0 Journal Article %A Matúš, František %T On conditional independence and log-convexity %J Annales de l'I.H.P. Probabilités et statistiques %D 2012 %P 1137-1147 %V 48 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/11-AIHP431/ %R 10.1214/11-AIHP431 %G en %F AIHPB_2012__48_4_1137_0
Matúš, František. On conditional independence and log-convexity. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) no. 4, pp. 1137-1147. doi : 10.1214/11-AIHP431. http://archive.numdam.org/articles/10.1214/11-AIHP431/
[1] Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics 28. Springer, Berlin, 1985. | MR | Zbl
.[2] On a method of describing random fields with discrete argument. Problemy Peredachi Informacii 6 (1970) 100-108. | MR
.[3] Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B Stat. Methodol. 36 (1974) 192-236. | MR | Zbl
.[4] Lattice Theory. AMS Colloquium Publications XXV. AMS, Providence, RI, 1967. | MR | Zbl
.[5] On the distinction between the conditional probability and joint probability approaches in the specification of nearest-neighbour systems. Biometrika 51 (1964) 481-483. | MR | Zbl
.[6] Statistical Decision Rules and Optimal Inference. AMS, Providence, RI, 1982. Translated from Russian, Nauka, Moscow, 1972. | MR | Zbl
.[7] Markov random fields in statistics. In: Disorder in Physical Systems: A Volume in Honour of J. M. Hammersley 19-32. G. Grimmett and D. Welsh (Eds). Oxford University Press, New York, 1990. | MR | Zbl
.[8] Generalized maximum likelihood estimates for exponential families. Probab. Theory Related Fields 141 (2008) 213-246. | MR | Zbl
and .[9] Markov fields and log-linear interaction models for contingency tables. Ann. Statist. 8 (1980) 522-539. | MR | Zbl
, and .[10] Additive and multiplicative models and interactions. Ann. Statist. 11 (1983) 724-738. | MR | Zbl
and .[11] Conditional independence in statistical theory (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 41 (1979) 1-31. | MR | Zbl
.[12] Lectures on Algebraic Statistics. Birkhäuser, Basel, 2009. | MR | Zbl
, and .[13] Smoothness of Gaussian conditional independence models. Contemp. Math. 516 (2010) 155-177. | MR | Zbl
and .[14] Markov and Gibbs fields with finite state space on graphs. Unpublished manuscript, 1973.
.[15] A theorem about random fields. Bull. Lond. Math. Soc. 5 (1973) 81-84. | MR | Zbl
.[16] Probability on Graphs. Cambridge Univ. Press, Cambridge, 2010. | MR | Zbl
.[17] Markov fields on finite graphs and lattices. Unpublished manuscript, 1971.
and .[18] Grundzüge der Mengenlehre. Veit, Leipzig, 1914. | JFM
.[19] Denumerable Markov Chains. Springer, New York, 1976. | MR | Zbl
, and .[20] Graphical Models. Oxford Univ. Press, Oxford, 1996. | MR | Zbl
.[21] On Gaussian conditional independence structures. Kybernetika (Prague) 43 (2007) 327-342. | MR | Zbl
and .[22] On equivalence of Markov properties over undirected graphs. J. Appl. Probab. 29 (1992) 745-749. | MR | Zbl
.[23] Ascending and descending conditional independence relations. In: Transactions of the 11-th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes B 189-200. Academia, Prague, 1992. | Zbl
.[24] Conditional independences among four random variables III: Final conclusion. Combin. Probab. Comput. 8 (1999) 269-276. | MR | Zbl
.[25] Conditional independences in Gaussian vectors and rings of polynomials. In Proceedings of WCII 2002. LNAI 3301 152-161. G. Kern-Isberner, W. Rödder and F. Kulmann (Eds). Springer, Berlin, 2005. | Zbl
.[26] Gibbs and Markov random systems with constraints. J. Stat. Phys. 10 (1974) 11-33. | MR
.[27] Generalized Gibbs states and Markov random fields. Adv. in Appl. Probab. 5 (1973) 242-261. | MR | Zbl
.[28] Markov random fields and Gibbs random fields. Israel J. Math. 14 (1973) 92-103. | MR | Zbl
.[29] Gaussian Markov distributions over finite graphs. Ann. Statist. 14 (1986) 138-150. | MR | Zbl
and .[30] Markov random fields and Gibbs ensembles. Amer. Math. Monthly 78 (1971) 142-154. | MR | Zbl
.[31] Probabilistic Conditional Independence Structures. Springer, New York, 2005. | Zbl
.Cité par Sources :