We consider the exclusion process in the one-dimensional discrete torus with points, where all the bonds have conductance one, except a finite number of slow bonds, with conductance , with . We prove that the time evolution of the empirical density of particles, in the diffusive scaling, has a distinct behavior according to the range of the parameter . If , the hydrodynamic limit is given by the usual heat equation. If , it is given by a parabolic equation involving an operator , where is the Lebesgue measure on the torus plus the sum of the Dirac measure supported on each macroscopic point related to the slow bond. If , it is given by the heat equation with Neumann’s boundary conditions, meaning no passage through the slow bonds in the continuum.
Nous considérons le processus d’exclusion dans le tore discret uni-dimensionnel avec points, où tous les liens ont conductance un, sauf pour un nombre fini de liens lents qui ont conductance , avec . Nous prouvons que l’évolution en temps de la densité empirique de particules, après un changement d’échelle diffusif, a un comportement différent selon la valeur du paramètre . Si , la limite hydrodynamique est donnée par l’équation de la chaleur usuelle. Si , la limite est donnée par une équation parabolique avec un opérateur , où est la mesure de Lebesgue sur le tore plus la somme des masses de Dirac en chaque point macroscopique relatif à un lien lent. Si , la limite est donnée par l’équation de la chaleur avec conditions au bord de Neumann, et ceci traduit l’absence de passage par les liens lents dans le continu.
Keywords: hydrodynamic limit, exclusion process, slow bonds
@article{AIHPB_2013__49_2_402_0, author = {Franco, Tertuliano and Gon\c{c}alves, Patr{\'\i}cia and Neumann, Adriana}, title = {Hydrodynamical behavior of symmetric exclusion with slow bonds}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {402--427}, publisher = {Gauthier-Villars}, volume = {49}, number = {2}, year = {2013}, doi = {10.1214/11-AIHP445}, mrnumber = {3088375}, zbl = {1282.60095}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/11-AIHP445/} }
TY - JOUR AU - Franco, Tertuliano AU - Gonçalves, Patrícia AU - Neumann, Adriana TI - Hydrodynamical behavior of symmetric exclusion with slow bonds JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 402 EP - 427 VL - 49 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/11-AIHP445/ DO - 10.1214/11-AIHP445 LA - en ID - AIHPB_2013__49_2_402_0 ER -
%0 Journal Article %A Franco, Tertuliano %A Gonçalves, Patrícia %A Neumann, Adriana %T Hydrodynamical behavior of symmetric exclusion with slow bonds %J Annales de l'I.H.P. Probabilités et statistiques %D 2013 %P 402-427 %V 49 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/11-AIHP445/ %R 10.1214/11-AIHP445 %G en %F AIHPB_2013__49_2_402_0
Franco, Tertuliano; Gonçalves, Patrícia; Neumann, Adriana. Hydrodynamical behavior of symmetric exclusion with slow bonds. Annales de l'I.H.P. Probabilités et statistiques, Volume 49 (2013) no. 2, pp. 402-427. doi : 10.1214/11-AIHP445. http://archive.numdam.org/articles/10.1214/11-AIHP445/
[1] A diffusive system driven by a battery or by a smoothly varying field. J. Stat. Phys. 140 (2010) 648-675. | MR | Zbl
, and .[2] Partial Differential Equations. Graduate Studies in Mathematics 19. American Mathematical Society, Providence, RI, 1998. | MR | Zbl
.[3] Bulk diffusion of 1D exclusion process with bond disorder. Markov Process. Related Fields 13 (2007) 519-542. | MR | Zbl
.[4] Hydrodynamic behavior of one dimensional subdiffusive exclusion processes with random conductances. Probab. Theory Related Fields 144 (2009) 633-667. | MR | Zbl
, and .[5] Hydrodynamic limit of gradient exclusion processes with conductances. Arch. Ration. Mech. Anal. 195 (2010) 409-439. | MR | Zbl
and .[6] Large deviations for the one-dimensional exclusion process with a slow bond. Unpublished manuscript, 2010.
, and .[7] Hydrodynamic limit for a type of exclusion processes with slow bonds in dimension . J. Appl. Probab. 48 (2011) 333-351. | MR | Zbl
, and .[8] Hydrodynamic limit for a particle system with degenerate rates. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 887-909. | Numdam | MR | Zbl
, and .[9] Hydrodynamic limit of particle systems in inhomogeneous media. In Dynamics, Games and Science II. M. Peixoto, A. Pinto and D. Rand (Eds). Springer, Berlin, 2011. | MR
.[10] Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 320. Springer, Berlin, 1999. | MR | Zbl
and .[11] The Boundary Value Problems of Mathematical Physic. Applied Math. Sci. 49. Springer, New York, 1985. | MR | Zbl
.[12] A First Course in Sobolev Spaces. Graduate Studies in Mathematics 105. American Mathematical Society, Providence, RI, 2009. | MR | Zbl
.[13] Hydrodynamic profiles for the totally asymmetric exclusion process with a slow bond. J. Stat. Phys. 102 (2001) 69-96. | MR | Zbl
.[14] Limit theorems for random walks, birth and death processes, and diffusion processes. Ill. J. Math. 7 (1963) 638-660. | MR | Zbl
.[15] Hydrodynamic limit of gradient exclusion processes with conductances. Ann. Inst. Henri Poincaré Probab. Stat. To appear. | Numdam | MR | Zbl
.Cited by Sources: