Nous considérons un cadre non conventionnel de moyenne de la forme , où , est un processus stochastique ou un système dynamique suffisamment mélangeant tandis que , et , ont une croissance sur-linéaire. Nous montrons que le terme d’erreur après renormalisation est asymptotiquement gaussien.
We consider “nonconventional” averaging setup in the form , where , is either a stochastic process or a dynamical system with sufficiently fast mixing while , and , grow faster than linearly. We show that the properly normalized error term in the “nonconventional” averaging principle is asymptotically Gaussian.
Mots-clés : averaging, limit theorems, martingales, hyperbolic dynamical systems
@article{AIHPB_2014__50_1_236_0, author = {Kifer, Yuri}, title = {Nonconventional limit theorems in averaging}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {236--255}, publisher = {Gauthier-Villars}, volume = {50}, number = {1}, year = {2014}, doi = {10.1214/12-AIHP514}, mrnumber = {3161530}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/12-AIHP514/} }
TY - JOUR AU - Kifer, Yuri TI - Nonconventional limit theorems in averaging JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 236 EP - 255 VL - 50 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/12-AIHP514/ DO - 10.1214/12-AIHP514 LA - en ID - AIHPB_2014__50_1_236_0 ER -
Kifer, Yuri. Nonconventional limit theorems in averaging. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 1, pp. 236-255. doi : 10.1214/12-AIHP514. http://archive.numdam.org/articles/10.1214/12-AIHP514/
[1] Multiple recurrence and almost sure convergence for weakly mixing dynamical systems. Israel J. Math. 103 (1998) 111-124. | MR | Zbl
.[2] Weakly mixing PET. Ergodic Theory Dynam. Systems 7 (1987) 337-349. | MR | Zbl
.[3] Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Math. 470. Springer, Berlin, 1975. | MR | Zbl
.[4] A limit theorem for solutions of differential equations with random right-hand side. Theory Probab. Appl. 22 (1977) 482-497. | MR | Zbl
.[5] Introduction to Strong Mixing Conditions. Kendrick Press, Heber City, 2007. | Zbl
.[6] From discrete-to continuous time ergodic theorems. Ergodic Theory Dynam. Systems. 32 (2012) 383-426. | MR | Zbl
, and .[7] On decay of correlations in Anosov flows. Ann. of Math. (2) 147 (1998) 357-390. | MR | Zbl
.[8] Limit theorems for partially hyperbolic systems. Trans. Amer. Math. Soc. 356 (2003) 1637-1689. | MR | Zbl
.[9] Averaging and invariant measures. Mosc. Math. J. 5 (2005) 537-576. | MR
.[10] Stochastic Processes. Wiley, New York, 1953. | MR | Zbl
.[11] Energy transfer in a fast-slow Hamiltonian system. Comm. Math. Phys. 308 (2011) 201-225. | MR | Zbl
and .[12] Nonconventional ergodic averages. Proc. Sympos Pure Math. 50 (1990) 43-56. | MR | Zbl
.[13] Decay of correlations, central limit theorems and approximation by Brownian motion for compact Lie group extensions. Ergodic Theory Dynam. Systems 23 (2003) 87-110. | MR | Zbl
, and .[14] Stability of mixing and rapid mixing for hyperbolic flows. Ann. of Math. (2) 166 (2007) 269-291. | MR | Zbl
, and .[15] Mixing properties and central limit theorem for a class of non-identical piecewise monotonic -transformations. Math. Nachr. 181 (1996) 185-214. | MR | Zbl
.[16] Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen, 1971. | MR | Zbl
and .[17] Limit Theorems for Stochastic Processes, 2nd edition. Springer, Berlin, 2003. | MR | Zbl
and .[18] On stochastic processes defined by differential equations with a small parameter. Theory Probab. Appl. 11 (1966) 211-228. | MR | Zbl
.[19] A limit theorem for solutions of differential equations with random right-hand side. Theory Probab. Appl. 11 (1966) 390-406. | Zbl
.[20] Limit theorems in averaging for dynamical systems. Ergodic Theory Dynam. Systems 15 (1995) 1143-1172. | MR | Zbl
.[21] Averaging principle for fully coupled dynamical systems and large deviations. Ergodic Theory Dynam. Systems 24 (2004) 847-871. | MR | Zbl
.[22] Nonconventional law of large numbers and fractal dimensions of some multiple recurrence sets. Stoch. Dyn. 12 (2012) 1150023. | MR | Zbl
.[23] A strong invariance principle for nonconventional sums. Probab. Theory Related Fields 155(1-2) (2013) 463-486. | MR | Zbl
.[24] Introduction to the Modern Theory of Dynamical Systems. Cambridge Univ. Press, Cambridge, 1995. | MR | Zbl
and .[25] Nonconventional limit theorems in discrete and continuous time via martingales. Ann. Probab. To appear. | MR
and .[26] Central limit theorems for deterministic systems. In International Conference on Dynamical Systems (Montevideo, 1995) 56-75. Pitman Research Notes in Math. 363. Longman, Harlow, 1996. | MR | Zbl
.[27] Invariance principles for dependent variables. Z. Wahrsch. Verw. Gebiete 32 (1975) 165-178. | MR | Zbl
.[28] On the invariance principle for nonstationary mixingales. Ann. Probab. 5 (1977) 616-621. | MR | Zbl
.[29] Averaging Methods in Nonlinear Dynamical Systems, 2nd edition. Springer, New York, 2007. | MR | Zbl
, and .Cité par Sources :