Dans ce papier nous étudions des bornes supérieures pour la densité d’une solution déquation différentielle conduite par un mouvement brownien fractionnaire d’indice de Hurst . Nous montrons, que sous certaines conditions géomètriques, dans le cas régulier , la densité de la solution satisfait l’inégalité de log-Sobolev, l’inégalité de concentration gaussienne et admet une borne supérieure gaullienne. Dans le cas et sous la même condition géomètrique, nous montrons que la densité est infiniment différentiable et admet une borne supérieure sous-gaussienne.
In this paper we study upper bounds for the density of solution to stochastic differential equations driven by a fractional Brownian motion with Hurst parameter . We show that under some geometric conditions, in the regular case , the density of the solution satisfies the log-Sobolev inequality, the Gaussian concentration inequality and admits an upper Gaussian bound. In the rough case and under the same geometric conditions, we show that the density of the solution is smooth and admits an upper sub-Gaussian bound.
@article{AIHPB_2014__50_1_111_0, author = {Baudoin, Fabrice and Ouyang, Cheng and Tindel, Samy}, title = {Upper bounds for the density of solutions to stochastic differential equations driven by fractional brownian motions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {111--135}, publisher = {Gauthier-Villars}, volume = {50}, number = {1}, year = {2014}, doi = {10.1214/12-AIHP522}, mrnumber = {3161525}, zbl = {1286.60051}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/12-AIHP522/} }
TY - JOUR AU - Baudoin, Fabrice AU - Ouyang, Cheng AU - Tindel, Samy TI - Upper bounds for the density of solutions to stochastic differential equations driven by fractional brownian motions JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 111 EP - 135 VL - 50 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/12-AIHP522/ DO - 10.1214/12-AIHP522 LA - en ID - AIHPB_2014__50_1_111_0 ER -
%0 Journal Article %A Baudoin, Fabrice %A Ouyang, Cheng %A Tindel, Samy %T Upper bounds for the density of solutions to stochastic differential equations driven by fractional brownian motions %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 111-135 %V 50 %N 1 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/12-AIHP522/ %R 10.1214/12-AIHP522 %G en %F AIHPB_2014__50_1_111_0
Baudoin, Fabrice; Ouyang, Cheng; Tindel, Samy. Upper bounds for the density of solutions to stochastic differential equations driven by fractional brownian motions. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 1, pp. 111-135. doi : 10.1214/12-AIHP522. http://archive.numdam.org/articles/10.1214/12-AIHP522/
[1] Operators associated with a stochastic differential equation driven by fractional Brownian motions. Stochastic Process. Appl. 117 (2007) 550-574. | MR | Zbl
and .[2] A version of Hörmander's theorem for the fractional Brownian motion. Probab. Theory Related Fields 139 (2007) 373-395. | MR | Zbl
and .[3] Small-time kernel expansion for solutions of stochastic differential equations driven by fractional Brownian motions. Stochastic. Process. Appl. 121 (2011) 759-792. | MR | Zbl
and .[4] Work in progress. Preprint, 2012.
, , and .[5] Estimates for the solution to stochastic differential equations driven by a fractional Brownian motion with Hurst parameter . Stoch. Dyn. 11 (2011) 243-263. | MR | Zbl
and .[6] Martingale representation and logarithmic Sobolev inequality. Electron. Com. Probab. 2 (1997) 71-81. | EuDML | MR | Zbl
, and .[7] Densities for rough differential equations under Hörmander condition. Ann. Math. To appear. | MR | Zbl
and .[8] Non-degeneracy of Wiener functionals arising from rough differential equations. Trans. Amer. Math. Soc. 361 (2009) 3359-3371. | MR | Zbl
, and .[9] Integrability estimates for Gaussian rough differential equations. Arxiv preprint, 2011. | Zbl
, and .[10] On inference for fractional differential equations. Arxiv preprint, 2011. | MR | Zbl
and .[11] Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002) 108-140. | MR | Zbl
and .[12] Potential theory for hyperbolic SPDEs. Ann. Probab. 32(3A) (2004) 2099-2148. | MR | Zbl
and .[13] Differential equations driven by rough paths: An approach via discrete approximation. Appl. Math. Res. Express. 2007 (2007) abm009. | MR | Zbl
.[14] A Milstein-type scheme without Lévy area terms for SDEs driven by fractional Brownian motion. Ann. Inst. H. Poincaré Probab. Statist. 48(2) (2012) 518-550. | Numdam | MR | Zbl
, and .[15] Smoothness of density for the area process of fractional Brownian motion. Arxiv preprint, 2010. | Zbl
.[16] Multidimensional Stochastic Processes Seen as Rough Paths. Cambridge Univ. Press, Cambridge, 2010. | MR | Zbl
and .[17] Controlling rough paths. J. Funct. Anal. 216 (2004) 86-140. | MR | Zbl
.[18] Rough evolution equations. Ann. Probab. 38 (2010) 1-75. | MR | Zbl
and .[19] Ergodicity of stochastic differential equations driven by fractional Brownian motion. Ann. Probab. 33 (2005) 703-758. | MR | Zbl
.[20] Ergodicity theory of SDEs with extrinsic memory. Ann. Probab. 35 (2007) 1950-1977. | MR | Zbl
and .[21] Regularity of laws and ergodicity of hypoelliptic SDEs driven by rough paths. Preprint, 2011. | MR | Zbl
and .[22] Stochastic Analysis on Manifolds. Graduate Series in Mathematics 38. Amer. Math. Soc., Providence, RI, 2002. | MR | Zbl
.[23] Differential equations driven by Hölder continuous functions of order greater than . Abel Symp. 2 (2007) 349-413. | MR | Zbl
and .[24] Generalized Langevin equation with fractional Gaussian noise: Subdiffusion within a single protein molecule. Phys. Rev. Lett. 93 (2004) 18.
and .[25] The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 89. Amer. Math. Soc., Providence, RI, 2001. | MR | Zbl
.[26] System Control and Rough Paths. Oxford Univ. Press, Oxford, 2002. | MR | Zbl
and .[27] Large deviations for rough paths of the fractional Brownian motion. Ann. Inst. H. Poincaré Probab. Stat. 42 (2006) 245-271. | Numdam | MR | Zbl
and .[28] Trees and asymptotic developments for fractional diffusion processes. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 157-174. | Numdam | MR | Zbl
, , and .[29] Discretizing the Lévy area. Stochastic Process. Appl. 120 (2010) 223-254. | MR | Zbl
, and .[30] The Malliavin Calculus and Related Topics, 2nd edition. Probability and Its Applications. Springer-Verlag, Berlin, 2006. | MR | Zbl
.[31] Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002) 55-81. | Zbl
and .[32] Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion. Stochastic Process. Appl. 119 (2009) 391-409. | MR | Zbl
and .[33] Elucidating the origin of anomalous diffusion in crowded fluids. Phys. Rev. Lett. 103 (2009) 3.
and .[34] Quantitative analysis of single particle trajectories: Mean maximal excursion method. Biophysical J. 98 (2010) 1364-1372.
, , , , , , and .[35] Analysis on Wiener space and applications. Arxiv preprint, 2010.
.[36] Integration with respect to fractal functions and stochastic calculus I. Probab. Theory Related Fields 111 (1998) 333-374. | MR | Zbl
.Cité par Sources :