Notre principal résultat établit la loi limite locale pour la distribution spectrale empirique de l’anti-commutateur de matrices de Wigner indépendantes dans l’esprit de la loi semi-circulaire locale. Notre approche adapte les techniques d’articles récents par Erdös–Yau–Yin. Nous utilisons aussi une description algébrique de la loi de l’anti-commutateur pour des variables libres due à Nica–Speicher, une variante de l’astuce de la linéarisation de Haagerup–Schultz–Thorbjørnsen et l’équation de Schwinger–Dyson. Une conséquence de notre travail est une version déterministe assez simple de la loi semi-circulaire locale.
Our main result is a local limit law for the empirical spectral distribution of the anticommutator of independent Wigner matrices, modeled on the local semicircle law. Our approach is to adapt some techniques from recent papers of Erdös–Yau–Yin. We also use an algebraic description of the law of the anticommutator of free semicircular variables due to Nica–Speicher, the linearization trick due to Haagerup–Schultz–Thorbjørnsen in a self-adjointness-preserving variant and the Schwinger–Dyson equation. A by-product of our work is a relatively simple deterministic version of the local semicircle law.
@article{AIHPB_2015__51_3_809_0, author = {Anderson, Greg W.}, title = {A local limit law for the empirical spectral distribution of the anticommutator of independent {Wigner} matrices}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {809--841}, publisher = {Gauthier-Villars}, volume = {51}, number = {3}, year = {2015}, doi = {10.1214/14-AIHP602}, mrnumber = {3365962}, zbl = {1360.60013}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/14-AIHP602/} }
TY - JOUR AU - Anderson, Greg W. TI - A local limit law for the empirical spectral distribution of the anticommutator of independent Wigner matrices JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 809 EP - 841 VL - 51 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/14-AIHP602/ DO - 10.1214/14-AIHP602 LA - en ID - AIHPB_2015__51_3_809_0 ER -
%0 Journal Article %A Anderson, Greg W. %T A local limit law for the empirical spectral distribution of the anticommutator of independent Wigner matrices %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 809-841 %V 51 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/14-AIHP602/ %R 10.1214/14-AIHP602 %G en %F AIHPB_2015__51_3_809_0
Anderson, Greg W. A local limit law for the empirical spectral distribution of the anticommutator of independent Wigner matrices. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 3, pp. 809-841. doi : 10.1214/14-AIHP602. http://archive.numdam.org/articles/10.1214/14-AIHP602/
[1] Convergence of the largest singular value of a polynomial in independent Wigner matrices. Ann. Probab. 41 (2013) 2103–2181. | DOI | MR | Zbl
.[2] Support properties of spectra of polynomials in Wigner matrices. Lecture notes, June 2012. Available at z.umn.edu/selfadjlintrick. Retrieved December 28, 2013.
.[3] An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics 118. Cambridge Univ. Press, Cambridge, 2010. | MR | Zbl
, and .[4] Analytic subordination theory of operator-valued free additive convolution and the solution of a general random matrix problem. Available at arXiv:1303.3196. | DOI | MR | Zbl
, and .[5] Convergence of Wigner integrals to the tetilla law. ALEA Lat. Am. J. Probab. Math. Stat. 9 (2012) 101–127. | MR | Zbl
and .[6] Spectral statistics of Erdös–Rényi graphs I: Local semicircle law. Ann. Probab. 41 (2013) 2279–2375. | DOI | MR | Zbl
, , and .[7] The local semicircle law for a general class of random matrices. Electron. J. Probab. 18 (2013) 1–58. | DOI | MR | Zbl
, , and .[8] Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math. 229 (2012) 1435–1515. | DOI | MR | Zbl
, and .[9] Bulk universality for generalized Wigner matrices. Probab. Theory Related Fields 154 (2012) 341–407. | DOI | MR | Zbl
, and .[10] The eigenvalues of random symmetric matrices. Combinatorica 1 (1981) 233–241. | DOI | MR | Zbl
and .[11] A random matrix approach to the lack of projections in . Adv. Math. 204 (2006) 1–83. | DOI | MR | Zbl
, and .[12] A new application of random matrices: is not a group. Ann. of Math. (2) 162 (2005) 711–775. | MR | Zbl
and .[13] Operator-valued semicircular elements: Solving a quadratic matrix equation with positivity constraints. Int. Math. Res. Not. IMRN 22 (2007) Art. ID rnm086. | MR | Zbl
, and .[14] Matrix Analysis, corrected reprint of the 1985 original. Cambridge Univ. Press, Cambridge, 1990. | MR | Zbl
and .[15] Commutators of free random variables. Duke Math. J. 92 (1998) 553–592. | DOI | MR | Zbl
and .[16] Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series 335. Cambridge Univ. Press, Cambridge, 2006. | MR | Zbl
and .[17] The Hanson–Wright inequality and sub-Gaussian concentration. Electron. Commun. Probab. 18 (2013) 1–9. | DOI | MR | Zbl
and .[18] Freely independent random variables with non-atomic distributions. Available at arXiv:1305.1920. | DOI | MR | Zbl
and .[19] Trace Ideals and Their Applications, 2nd edition. Mathematical Surveys and Monographs 120. Amer. Math. Soc., Providence, RI, 2005. | MR | Zbl
.[20] Random matrices: Universality of local eigenvalue statistics up to the edge. Comm. Math. Phys. 298 (2010) 549–572. | DOI | MR | Zbl
and .[21] Random matrices: Universality of local eigenvalue statistics. Acta Math. 206 (2011) 127–204. | DOI | MR | Zbl
and .[22] Free Random Variables. A Noncommutative Probability Approach to Free Products with Applications to Random Matrices, Operator Algebras and Harmonic Analysis on Free Groups. CRM Monograph Series 1. Amer. Math. Soc., Providence, RI, 1992. | DOI | MR | Zbl
, and .[23] Spectral norm of random matrices. Combinatorica 27 (2007) 721–736. | DOI | MR | Zbl
.[24] Random weighted projections, random quadratic forms and random eigenvectors. Available at arXiv:1306.3099. | DOI | MR | Zbl
and .[25] Bounds for the moments of linear and quadratic forms in independent variables. Teor. Veroyatn. Primen. 5 (1960) 331–335. Transl. Theory Probab. Appl. 5 (1960) 303–305. | MR | Zbl
.Cité par Sources :