Kolmogorov’s law of the iterated logarithm for noncommutative martingales
Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 3, pp. 1124-1130.

Nous prouvons la loi de Kolmogorov du logarithme itéré pour des martingales non-commutatives. Le cas commutatif a été établi par Stout. L’ingrédient clé est une inégalité exponentielle prouvée récemment par Junge et l’auteur.

We prove Kolmogorov’s law of the iterated logarithm for noncommutative martingales. The commutative case was due to Stout. The key ingredient is an exponential inequality proved recently by Junge and the author.

DOI : 10.1214/14-AIHP603
Mots-clés : law of the iterated logarithm, noncommutative martingales, quantum martingales, exponential inequality
@article{AIHPB_2015__51_3_1124_0,
     author = {Zeng, Qiang},
     title = {Kolmogorov{\textquoteright}s law of the iterated logarithm for noncommutative martingales},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {1124--1130},
     publisher = {Gauthier-Villars},
     volume = {51},
     number = {3},
     year = {2015},
     doi = {10.1214/14-AIHP603},
     mrnumber = {3365975},
     zbl = {1335.46058},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1214/14-AIHP603/}
}
TY  - JOUR
AU  - Zeng, Qiang
TI  - Kolmogorov’s law of the iterated logarithm for noncommutative martingales
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2015
SP  - 1124
EP  - 1130
VL  - 51
IS  - 3
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/articles/10.1214/14-AIHP603/
DO  - 10.1214/14-AIHP603
LA  - en
ID  - AIHPB_2015__51_3_1124_0
ER  - 
%0 Journal Article
%A Zeng, Qiang
%T Kolmogorov’s law of the iterated logarithm for noncommutative martingales
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2015
%P 1124-1130
%V 51
%N 3
%I Gauthier-Villars
%U http://archive.numdam.org/articles/10.1214/14-AIHP603/
%R 10.1214/14-AIHP603
%G en
%F AIHPB_2015__51_3_1124_0
Zeng, Qiang. Kolmogorov’s law of the iterated logarithm for noncommutative martingales. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 3, pp. 1124-1130. doi : 10.1214/14-AIHP603. http://archive.numdam.org/articles/10.1214/14-AIHP603/

[1] H. Bauer. Probability Theory. de Gruyter Studies in Mathematics 23. Walter de Gruyter, Berlin, 1996. Translated from the fourth (1991) German edition by Robert B. Burckel and revised by the author. | MR | Zbl

[2] A. De Acosta. A new proof of the Hartman–Wintner law of the iterated logarithm. Ann. Probab. 11 (2) (1983) 270–276. | MR | Zbl

[3] T. Fack and H. Kosaki. Generalized s-numbers of τ-measurable operators. Pacific J. Math. 123 (2) (1986) 269–300. | MR | Zbl

[4] P. Hartman and A. Wintner. On the law of the iterated logarithm. Amer. J. Math. 63 (1941) 169–176. | DOI | JFM | MR

[5] R. Imbuzeiro Oliveira. Concentration of the adjacency matrix and of the Laplacian in random graphs with independent edges. ArXiv e-prints, 2009.

[6] M. Junge. Doob’s inequality for non-commutative martingales. J. Reine Angew. Math. 549 (2002) 149–190. | MR | Zbl

[7] M. Junge and Q. Xu. Noncommutative Burkholder/Rosenthal inequalities. Ann. Probab. 31 (2) (2003) 948–995. | MR | Zbl

[8] M. Junge and Q. Xu. Noncommutative maximal ergodic theorems. J. Amer. Math. Soc. 20 (2) (2007) 385–439. | MR | Zbl

[9] M. Junge and Q. Zeng. Noncommutative martingale deviation and Poincaré type inequalities with applications. Preprint, 2012. | MR

[10] M. Konwerska. The Law of the Iterated Logarithm in Noncommutative Probability. ProQuest LLC, Ann Arbor, MI, 2008. Ph.D. Thesis, Univ. Illinois at Urbana–Champaign. | MR

[11] M. Konwerska. The law of the iterated logarithm in noncommutative probability. Preprint, 2012. | MR

[12] M. Ledoux and M. Talagrand. Probability in Banach Spaces: Isoperimetry and Processes. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 23. Springer, Berlin, 1991. | MR | Zbl

[13] G. Pisier. Non-commutative vector valued L p -spaces and completely p-summing maps. Astérisque 247 (1998) vi+131. | Numdam | MR | Zbl

[14] G. Pisier and Q. Xu. Non-commutative L p -spaces. In Handbook of the Geometry of Banach Spaces, Vol. 2 1459–1517. North-Holland, Amsterdam, 2003. | MR | Zbl

[15] W. F. Stout. A martingale analogue of Kolmogorov’s law of the iterated logarithm. Z. Wahrsch. Verw. Gebiete 15 (1970) 279–290. | DOI | MR | Zbl

[16] W. F. Stout. The Hartman–Wintner law of the iterated logarithm for martingales. Ann. Math. Statist. 41 (1970) 2158–2160. | DOI | Zbl

[17] M. Terp. L p -spaces associated with von Neumann algebras. Notes, Copenhagen Univ., 1981.

[18] D. V. Voiculescu, K. J. Dykema and A. Nica. Free Random Variables. CRM Monograph Series 1. Amer. Math. Soc., Providence, RI, 1992. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups. | DOI | MR | Zbl

[19] W. B. Wu. Strong invariance principles for dependent random variables. Ann. Probab. 35 (6) (2007) 2294–2320. | MR | Zbl

[20] O. Zhao and M. Woodroofe. Law of the iterated logarithm for stationary processes. Ann. Probab. 1 (2008) 127–142. | MR | Zbl

Cité par Sources :